Datenblatt für SY89859U von Microchip Technology

ETIIEREE www.micrel.com
SY89859U
Precision Low-Power 8:1 MUX with Internal
Termination and 1:2 LVPECL Fanout Buffer
Precision Edge is a registered trademark of Micrel, Inc.
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
General Description
The SY89859U is a low jitter, low-power, high-speed
8:1 multiplexer with a 1:2 differential fanout buffer
optimized for precision telecom and enterprise server
distribution applications. The SY89859U distributes
clock frequencies from DC to >2.5GHz, and data rates
to 2.5Gbps guaranteed over temperature and voltage.
The SY89859U differential input includes Micrel’s
unique, 3-pin input termination architecture that
directly interfaces to any differential signal (AC- or
DC-coupled) as small as 100mV (200mVpp) without
level shifting or termination resistor networks in the
signal path. The outputs are 800mV, 100K-compatible
LVPECL with extremely fast rise/fall time guaranteed
to be less than 180ps.
The SY89859U features a patent-pending isolation
design that significantly improves on channel-to-
channel crosstalk-induced jitter performance.
The SY89859U operates from a 2.5V ±5% or 3.3V
±10% supply and is guaranteed over the full industrial
temperature range of 40°C to +85°C. The SY89859U
is part of Micrel’s high-speed, Precision Edge® product
line.
All support documentation can be found on
Micrel’s web site at: www.micrel.com.
Precision Edge®
Features
Selects between 1 of 8 inputs, and provides 2
precision, low skew 100K-compatible LVPECL
output copies
Low power: 150mW typ. (2.5V)
Guaranteed AC performance over temperature and
voltage:
DC to >2.5Gbps
DC to >2.5GHz
<690ps propagation delay
<180ps tr/tf time
<20ps skew (output-to-output)
Unique, patent-pending channel-to-channel
isolation design provides superior crosstalk
performance
Ultra-low jitter design:
<1psRMS random jitter
<10psPP deterministic jitter
<10psPP total jitter (clock)
<1psRMS cycle-to-cycle jitter
<0.7psRMS crosstalk-induced jitter
Unique, patented input termination and VT pin
accepts DC- and AC-coupled inputs (CML, PECL,
LVDS)
Power supply 2.5V ±5% or 3.3V ±10%
40°C to +85°C industrial temperature range
Available in 44-pin (7mm x 7mm) QFN package
Applications
Data communication systems
All SONET/SDH data/clock applications
All Fibre Channel applications
All Gigabit Ethernet applications
United States Patent No. RE44,134
mo menace <— um="" 81mux="" lin2="" memo=""><— m:="" $1="" waa="" son="" m="" ina="" sun="" ma="" 5m="" j—c="" um="" _="" we;="" ac2=""><— ms="" 50/)="" w5="" sun="" [ins="" 1-2="" fanom="" on="" m="" mux="" ,_="" t="" m="" 5="" la/z/m="" 51="" so="" ms="" mmiiwflhmm="" ms="" vague:=""><— m:="" sun="" v77="" sun="" hm="" sela="" tomes/rm="" seu="" tomes/rm="" selz="" tomes/rm="" hbwhe‘nglcre="" cum="">
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
2
Functional Block Diagram
ws VREFVACZ NM VT4 \NA NC NNI! v73 IN3 VREF-AC1 /IN2 t v15 [INS we we IINS VREF-ACS 33 GND 32 vcc 3‘ :/m an 0‘ 29 : vcc 23 GND 27 ¥vcc 25 no 25 :110 m 24 vcc u 23 GND I213NISIS171619 2n2122 hbwhe‘nglcrel com
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
3
Ordering Information(1)
Part Number Package Type Operating
Range Package Marking Lead
Finish
SY89859UMY QFN-44 Industrial SY89859U with Pb-Free bar-line indicator Matte-Sn
Pb-Free
SY89859UMYTR(2) QFN-44 Industrial SY89859U with Pb-Free bar-line indicator Matte-Sn
Pb-Free
Notes:
1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals only.
2. Tape and Reel.
Pin Configuration
44-Pin QFN
Truth Table
SEL2 SEL1 SEL0 Q /Q
L L L IN0 /IN0
L L H IN1 /IN1
L H L IN2 /IN2
L H H IN3 /IN3
H L L IN4 /IN4
H L H IN5 /IN5
H H L IN6 /IN6
H H H IN7 /IN7
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
4
Pin Description
Pin Number Pin Name Pin Function
20, 18
16, 14
13, 11
9, 7
5, 3
1, 43
42, 40
38, 36
IN0, /IN0
IN1, /IN1
IN2, /IN2
IN3, /IN3
IN4, /IN4
IN5, /IN5
IN6, /IN6
IN7, /IN7
Differential Inputs: These input pairs are the differential signal inputs to the device.
Inputs accept AC- or DC-coupled signals as small as 100mV (200mVpp). Each pin of
a pair internally terminates to a VT pin through 50Ω. Note that these inputs will default
to an indeterminate state if left open. Please refer to the “Input Interface Applications
section for more details.
19, 15
12, 8
4, 44
41, 37
VT0, VT1
VT2, VT3
VT4, VT5
VT6, VT7
Input Termination Center-Tap: Each side of the differential input pair terminates to a
VT pin. The VT pins provide a center-tap to a termination network for maximum
interface flexibility. See “Input Interface Applications” section for more details. For a
CML or LVDS inputs, the VT pin is left floating.
17
10
2
39
VREF-AC0
VREF-AC1
VREF-AC2
VREF-AC3
Reference Voltage: These outputs bias to VCC1.2V. They are used when AC
coupling the inputs (IN, /IN). For AC-coupled applications, connect VREF-AC to the
VT pin and bypass with a 0.01µF low ESR capacitor to VCC. See “Input Interface
Applications” section for more details.
21
22
35
SEL0
SEL1
SEL2
The single-ended TTL/CMOS-compatible inputs select the inputs to the multiplexer.
Note that this input is internally connected to a 25k Ω pull-up resistor and will default
to a logic HIGH state if left open. The threshold voltage is VTH = VCC/2.
24, 27, 29, 32 VCC Positive Power Supply. Bypass with 0.1µF||0.01µF low ESR capacitors and place as
close to each VCC pin as possible.
25, 26
30, 31 Q0, /Q0
Q1, /Q1
Differential Outputs: These 100K-compatible LVPECL output pairs are the outputs of
the device. Unused output pairs may be left open. Each output is designed to drive
800mV into 50Ω terminated to VCC–2V.
23, 28, 33 GND
Exposed Pad Ground. GND and exposed pad must both be connected to the same ground plane.
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
5
Absolute Maximum Ratings(1)
Supply Voltage (VCC) .......................... 0.5V to +4.0V
Input Voltage
SEL0, SEL1, SEL2 .......................... 0.5V to VCC
IN0, /IN0, IN1, /IN1,…/IN7, /IN7 ...... 0.5V to VCC
LVPECL Output Current (IOUT)
Continuous ................................................ ±50mA
Surge ...................................................... ±100mA
Termination Current
Source or sink current
VT0, VT1, VT2,…VT7 ............................. ±100mA
Input Current
Source or sink current
IN0, /IN0, IN1, /IN1,…IN7, /IN7 ................ ±50mA
VREF Output Current
VREF-AC0, VREF-AC1…, VREF-AC3 ....... ±2mA
Lead Temperature (soldering, 20 sec.) .......... +260°C
Storage Temperature (Ts) ................. 65°C to 150°C
Operating Ratings(2)
Supply Voltage (VCC).................. +2.375V to +2.625V
.................................................+3.0V to +3.6V
Ambient Temperature (TA) ................40°C to +85°C
Package Thermal Resistance(3)
QFN (θJA)
Still-Air ................................................ 24°C/W
QFN (ψJB)
Junction-to-Board ............................... 12°C/W
DC Electrical Characteristics(4)
TA = 40°C to +85°C, unless otherwise stated.
Symbol Parameter Condition Min Typ Max Units
VCC Power Supply 2.375 2.5 2.625 V
3.0 3.3 3.6 V
ICC Power Supply Current No load, max. VCC 60 85 mA
RIN Input Resistance (IN-to-VT) 45 50 55
RDIFF_IN Differential Input Resistance
(IN-to-/IN) 90 100 110
VIH Input High Voltage
(IN, /IN)
Note 5 VCC1.6 VCC V
VIL Input Low Voltage
(IN, /IN) 0 VIH0.1 V
VIN Input Voltage Swing
(IN, /IN) See Figure 1a. 0.1 1.7 V
VDIFF_IN Differential Input Voltage Swing
|IN-to-/IN| See Figure 1b. 0.2 V
VT_IN IN-to-VT
(IN, /IN) 1.28 V
VREF-AC Output Reference Voltage VCC1.3 VCC1.2 VCC1.1 V
Notes:
1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not
implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings
conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θJA and
ΨJB values are determined for a 4-layer board in still-air, unless otherwise stated.
4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
5. VIH (min) not lower than 1.2V.
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
6
100K LVPECL Output DC Electrical Characteristics(6)
VCC = +2.5V ±5% or 3.3V ±10%, RL = 50Ω to VCC2V; TA = 40°C to +85°C, unless otherwise stated.
Symbol Parameter Condition Min Typ Max Units
VOH Output HIGH Voltage
(Q, /Q) VCC1.145 VCC–0.895 V
VOL Output LOW Voltage
(Q, /Q) VCC1.945 VCC–1.695 V
VOUT Output Differential Swing See Figure 1a. 550 800 mV
VDIFF_OUT Differential Output Voltage Swing See Figure 1b. 1100 1600 mV
LVTTL/CMOS DC Electrical Characteristics(6)
VCC = +2.5V ±5% or 3.3V ±10%; TA = 40°C to +85°C, unless otherwise stated.
Symbol Parameter Condition Min Typ Max Units
VIH Input HIGH Voltage 2.0 V
VIL Input LOW Voltage 0.8 V
IIH Input HIGH Current IIH @ VIN = VCC 125 40 µA
IIL Input LOW Current IIL @ VIN = 0.5V 300 µA
Note:
6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
VD V w- ‘V’gv mm, [M ) VD F; om Isoomv (WI: > hbwhelQQrmcve com
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
7
AC Electrical Characteristics(7)
VCC = +2.5V ±5% or 3.3V ±10%; VIN 100mV (200mVpp); RL = 50Ω to VCC2V; TA = 40°C to +85°C, unless
otherwise stated.
Symbol Parameter Condition Min Typ Max Units
fMAX Maximum Operating Frequency 2.5 Gbps
2.5 3.5 GHz
tpd
Differential Propagation Delay
IN-to-Q
SEL-to-Q
360
475
640
ps
200 600 850 ps
tpd
Tempco
Differential Propagation Delay
Temperature Coefficient IN-to-Q 300 fs/oC
SEL-to-Q 400
tSKEW Output-to-Output Skew Note 8 5 20 ps
Part-to-Part Skew Note 9 200 ps
tJITTER
Data
Random Jitter (RJ) Note 10
1 psRMS
Deterministic Jitter (DJ) Note 11
10 psPP
Clock
Cycle-to-Cycle Jitter Note 12
1 psRMS
Total Jitter (TJ) Note 13 10 psPP
Adjacent Channel Crosstalk-induced Jitter Note 14
0.7 psRMS
tr, tf Output Rise/Fall Time (20% to 80%) At full output swing. 50 110 180 ps
Notes:
7. High-frequency AC-parameters are guaranteed by design and characterization.
8. Output-to-output skew is measured between two different outputs under identical input transitions.
9. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at
the respective inputs.
10. Random jitter is measured with a K28.7 character pattern, measured at <fMAX.
11. Deterministic jitter is measured at 2.5Gbps with both K28.5 and 2231 PRBS pattern.
12. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, Tn – Tn-1 where T is the time between rising edges of the
output signal.
13. Total jitter definition: with an ideal clock input of frequency <fMAX, no more than one output edge in 1012 output edges will deviate by more
than the specified peak-to-peak jitter value.
14. Crosstalk-induced jitter is defined as the added jitter that results from signals applied to two adjacent channels. It is measured at the output
while applying two similar, differential clock frequencies that are asynchronous with respect to each other at the inputs.
Single-Ended and Differential Swings
Figure 1a. Single-Ended Voltage Swing
OUTPUT SWING unv) 800 Ewbmmg D a o D on u 0 Output Swing Vsa Frequency 0 I000 2000 3000 4000 5000 FREQUENCYMHZ) PROPAGATION DELAY (p5) Propagation Delay vs. m TemPeratureth-lo-Q) $50 530 600 570 540 510 480 450 410 390 I: 200MHz CML LVPECL 350 An 720 D 20 40 6|] 80100 TEMPERATURE (“C1 PROPAGATION DELAV ms) Propagation Delay vs. 850 Temperature (SEL-lo-Q) 735 720 655 590 525 450 395 330 165 200 40 720 u 20 40 50 80100 TEMPERATURE (°C> I: 200MHz hbwhel mlcre‘
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
8
Typical Operating Characteristics
VCC = 3.3V, GND = 0, VIN = 100mV (200mVpp), RL = 50Ω to VCC2V; TA = 25°C, unless otherwise stated.
Output Swing (ZOOmV/dlv.) 522Mhps Output 3.26bps Output Output Swing (ZDOmVIdIv) TIME (500ps/divt) TIME (70ps/dtv.) hbwhengmicret.com
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
9
Functional Characteristics
VCC = 3.3V, GND = 0, VIN = 100mV (200mVpp), RL = 50Ω to VCC2V; TA = 25°C, unless otherwise stated.
llN . v GND TT _c IN . V IN v C“ svasasgu i o OIyF VT Rm ; EC, VREFVAC For VCC = 3 av am, For VCC = 2 5v, Hm IN /IN svasBssU VT VREFVAC I I IN svaesssu Vcc | | LVPECL —| |—c (IN and find GND Vcc GND L FE VREF-AC o VT mm: Fora avI Rm: Iom For 2 5V, Rw = 50:) GND NOD— NCD— IN IIN svassssu VT VFIEFVAC IN /IN svassssu GND NC D_ v1- NC D_ VRELAC hbwhengmIcre com
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
10
Input and Output Stages
Figure 2a. Simplified Differential Input Stage
Input Interface Applications
Figure 3a. LVPECL Interface
(DC-Coupled)
Figure 3b. LVPECL Interface
(AC-Coupled)
Option: may connect VT to VCC
Figure 3c. CML Interface
(DC-Coupled)
Figure 3d. CML Interface
(AC-Coupled)
Figure 3e. LVDS Interface
H1 H1 3 3v 130:1 3 3V + 20 = 509 1500 :1 , Z0 = 5052 7 : R2 H2 : 92:2 92:2 +3.3V +3.3V 0.01m: : (op‘iona‘) htth/wwwmicrel.cam/produm-info/products/syfimam shtml htth/wwwmicrel.cam/grodum-info/groducts/sySBOBBu shtml htth/wwwmicrel.cam/produm-info/products/sySBOBBu shtml www.micrel com/gmduct-info/products/solutxonsshtml hbwhe‘ngicrelLom
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
11
LVPECL Output Interface Applications
LVPECL has high input impedance, very low output
(open emitter) impedance, and small signal swing
which result in low EMI. LVPECL is ideal for driving
50- and 100-controlled impedance transmission
lines. There are several techniques for terminating
the LVPECL output including: Parallel Termination-
Thevenin Equivalent, Parallel Termination (3-
Resistor), and AC-Coupled Termination. Unused
output pairs may be left floating. However, single-
ended outputs must be terminated, or balanced.
Figure 4a. Parallel Thevenin-Equivalent
Termination
Note:
For 2.5V system, R1 = 250Ω, R2 = 62.5Ω.
Figure 4b. Parallel Termination
(3-Resistor)
Note:
For 2.5V system, Rb = 19Ω.
Related Product and Support Documentation
Part Number Function Data Sheet Link
SY58037U Ultra Precision 8:1 MUX with Internal
Termination and 1:2 CML Fanout Buffer http://www.micrel.com/product-info/products/sy58037u.shtml
SY58038U Ultra Precision 8:1 MUX with Internal
Termination and 1:2 LVPECL Fanout Buffer http://www.micrel.com/product-info/products/sy58038u.shtml
SY58039U Ultra Precision 8:1 MUX with Internal
Termination and 1:2 400mV LVPECL Fanout
Buffer
http://www.micrel.com/product-info/products/sy58039u.shtml
HBW Solutions New Products and Applications www.micrel.com/product-info/products/solutions.shtml
Norzs : a L EVENSWNG mu mumcm away m A94: mu 7 m. - 2. m thslms u: m mums I: IS IN mm n .s m: mm. mum nr Vin-nus u: M-’ 0-404st b was m uzmmn 12mm no Is unsum mum (m m nan-n mm 1:an w \r m: mum ms mt mm“ mus m m: umm + END (T “E "RURAL "t WW 5 94mm MOI BS IEASARED IN IN" MINUS AREA Ann AND Nt um: ro m: mesa or mums on E101 o mo : so: msvscnvsu. a an, "Lust mum rs nos M 7. D‘Anwll ALLOIWIE BIKES IS 0.075 mm M Au. DWEUKMS Ann 1‘ m m you win at Mil mum )xl—| AIA'EIAI. mm..." ms mass m w: EXPOSEn .(u SINK sure As in. AS m mums -: I m M5 nnAuNG menus to use nmsmn mm»: worn!) m ”WSW u H mm mum A) REIIJ— ‘ ‘\ u WUU qugL : c 3 a no, 1 MAJ)“: =’ €_| :2 W W §\l>umw s) W .V- ng "$4: Jim/A 74M,qu EB? SEE DEflAL ' A m i Damage EV- Expflxed m DE comm mam ‘ ‘ ‘ o o : ‘ o o o ‘ c o : \ Hemess‘rmmn musspmn / . , / \ v25 / _ ‘ Hm mummy ,// \ / ,, vEE Hm Copper mm hbwhelQQmIcre com
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
12
Package Information
44-Pin QFN (QFN-44)
PCB Thermal Consideration for 44-Pin QFN™ Package
(Always solder, or equivalent, the exposed pad to the PCB)
Package Notes:
1. Package meets Level 2 qualification.
2. All parts are dry-packaged before shipment.
3. Exposed pads must be soldered to a ground for proper thermal management.
or or my and hbwhelQmecve com
Micrel, Inc. SY89859U
December 2007 M9999-120607-D
hbwhelp@micrel.com or (408) 955-1690
13
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. Howe
ver, no responsibility is assumed by Micrel for
its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life suppor
t appliances, devices or systems where malfunction of a
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that
(a) are intended for
surgical implant into the body or (b) support or susta
in life, and whose failure to perform can be reasonably expected to result in a significant injury
to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchas
er’s own risk and
Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.