Datenblatt für MCIMX7D2D von NXP USA Inc.

Ordering Information
See Table 1 on page 3
MCIMX7D
x
DV
x
1
n
SD
MCIMX7D
x
EV
x
1
n
SD
NXP Semiconductors
Data Sheet: Technical Data
Document Number: IMX7DCEC
Rev. 6, 03/2019
Package Information
Plastic Package
BGA 12 x 12 mm, 0.4 mm pitch
BGA 19 x 19 mm, 0.75 mm pitch
© 2016, 2017, 2019 NXP B.V.
NXP reserves the right to change the detail specifications as may be required to permit improvements in the design of
its products.
1 i.MX 7Dual introduction
The i.MX 7Dual family of processors represents NXP’s
latest achievement in high-performance processing for
low-power requirements with a high degree of functional
integration. These processors are targeted towards the
growing market of connected and portable devices.
The i.MX 7Dual family of processors features advanced
implementation of the Arm® Cortex®-A7 core, which
operates at speeds of up to 1 GHz and 1.2 GHz,
depending on the part number. The i.MX 7Dual family
provides up to 32-bit
DDR3/DDR3L/LPDDR2/LPDDR3-1066 memory
interface and a number of other interfaces for connecting
peripherals, such as WLAN, Bluetooth, GPS, displays,
and camera sensors.
i.MX 7Dual Family of
Applications Processors
Datasheet
1 i.MX 7Dual introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Architectural overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Modules list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Special signal considerations . . . . . . . . . . . . . . . . 16
3.2 Recommended connections for unused analog
interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Integrated LDO voltage regulator parameters. . . . 40
4.3 PLL electrical characteristics. . . . . . . . . . . . . . . . . 42
4.4 On-chip oscillators. . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 I/O DC parameters . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Output buffer impedance parameters . . . . . . . . . . 51
4.8 System modules timing . . . . . . . . . . . . . . . . . . . . . 53
4.9 General-purpose media interface (GPMI) timing. . 73
4.10 External peripheral interface parameters . . . . . . . 81
4.11 12-Bit A/D converter (ADC) . . . . . . . . . . . . . . . . . 118
5 Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1 Boot mode configuration pins . . . . . . . . . . . . . . . 119
5.2 Boot device interface allocation. . . . . . . . . . . . . . 120
6 Package information and contact assignments. . . . . . . 122
6.1 12 x 12 mm package information . . . . . . . . . . . . 122
6.2 19 x 19 mm package information . . . . . . . . . . . . 139
7 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
i.MX 7Dual introduction
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors2
The i.MX 7Dual family of processors is specifically useful for applications such as:
Audio
Connected devices
Access control panels
Human-machine interfaces (HMI)
Portable medical and health care
IP phones
Smart appliances
Point of Sale
•eReaders
• Wearables
Home energy management systems
The features of the i.MX 7Dual family of processors include the following:
Arm Cortex-A7 plus Arm Cortex-M4—Heterogeneous Multicore Processing architecture enables
the device to run an open operating system like Linux/Android on the Cortex-A7 core and an RTOS
like FreeRTOS™ on the Cortex-M4 core.
Two Arm Cortex-A7 cores—The processor enhances the capabilities of portable, connected
applications by fulfilling the ever-increasing MIPS needs of operating systems and applications at
lowest power consumption levels per MHz.
Multilevel memory system—The multilevel Cortex-A7 memory system is based on the L1
instruction and data caches, L2 cache, and internal and external memory. The processor supports
many types of external memory devices, including DDR3, DDR3L, LPDDR2 and LPDDR3, NOR
Flash, NAND Flash (MLC and SLC), QSPI Flash, and managed NAND, including eMMC rev.
Power efficiency—Power management implemented throughout the IC enables features and
peripherals to consume minimum power in both active and various low-power modes.
Multimedia—The multimedia performance is enhanced by a multilevel cache system, NEON™
MPE (Media Processor Engine) coprocessor, a programmable smart DMA (SDMA) controller.
Up to two Gigabit Ethernet with AVB—10/100/1000 Mbps Ethernet controllers supporting IEEE
Std 1588 time synchronization.
Electronic Paper Display Controller (EPDC)—The processor integrates an EPD controller that
supports E Ink® color and monochrome panels with up to 2048 x 1536 resolution at 106 Hz
refresh, 4096 x 4096 resolution at 20 Hz refresh, and 5-bit grayscale (32-levels per color channel).
Human-machine interface (HMI)—i.MX 7Dual processor provides up to two separate display
interfaces (parallel display and two-lane MIPI-DSI), CMOS sensor interface (two-lane MIPI-CSI
and parallel).
Interface flexibility—i.MX 7Dual processor supports connections to a variety of interfaces: two
high-speed USB on-the-go modules with PHY, High-Speed Inter-Chip USB, multiple expansion
card ports (high-speed MMC/SDIO host and other), two Gigabit Ethernet controllers with support
for Ethernet AVB, PCIe-II, two 12-bit ADCs with a total of 8 single-ended inputs, two CAN ports,
and a variety of other popular interfaces (such as UART, I
2
C, and I
2
S).
i.MX 7Dual introduction
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 3
Advanced security—The processors deliver hardware-enabled security features that enable secure
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure
software downloads. The security features are discussed in detail in the i.MX 7Dual security
reference manual.
Integrated power management—The processors integrate linear regulators and internally generate
voltage levels for different power domains. This significantly simplifies system power
management structure.
For a comprehensive list of the i.MX 7Dual features, see Section 1.2, “Features.”
1.1 Ordering information
Table 1 provides examples of orderable sample part numbers covered by this data sheet.
Table 1. Orderable parts
Part Number Options Cortex-A7 CPU
Speed Grade Qualification Tier Temperature
(T
j
)Package
MCIMX7D7DVK10SD EPDC, CAN
2 x Gigabit Ethernet
4 tamper pins
1 x ADC
1 GHz Consumer
1
0 to +95°C 12x12 mm
0.4 mm pitch
BGA
MCIMX7D7DVM10SD EPDC, CAN
2 x Gigabit Ethernet
10 tamper pins
2 x ADC
1 GHz Consumer
1
0 to +95°C 19x19 mm
0.75 mm pitch
BGA
MCIMX7D5EVK10SD No EPDC, CAN
2 x Gigabit Ethernet
4 tamper pins
1 x ADC
1 GHz Industrial
2
-20 to 105°C 12x12 mm
0.4 mm pitch
BGA
MCIMX7D5EVM10SD No EPDC, CAN
2 x Gigabit Ethernet
10 tamper pins
2 x ADC
1 GHz Industrial
2
-20 to 105°C 19x19 mm
0.75 mm pitch
BGA
MCIMX7D3DVK10SD No EPDC, No CAN
2 x Gigabit Ethernet
4 tamper pins
1 x ADC
1 GHz Consumer
1
0 to +95°C 12x12 mm
0.4 mm pitch
BGA
MCIMX7D3EVK10SD No EPDC, No CAN
2 x Gigabit Ethernet
4 tamper pins
1 x ADC
1 GHz Industrial
2
–20 to +105°C 12x12 mm
0.4 mm pitch
BGA
MCIMX7D +\/N <$$%a y—=""> sAIcou Revlslofl Fusina Onions > Cole Fretluency Pack-me type 7 4H RUHS Dala sum Tnmperalum > Pandiflerenualor Qualflcdflon Level Pam! Series , ARM core based rnqmy TemDQrInl: n l mm W nmm‘ u ems muviwc : pm“? W .. mm mm um um u .12 um m IxUSBZnOTG mum 315nm
i.MX 7Dual introduction
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors4
Figure 1 describes the part number nomenclature so that the users can identify the characteristics of the
specific part number.
1
Restricted electrical specifications for parts with CPU maximum frequency of 1.2 GHz:
Temperature range 0 to 85 degrees C (see Table 1)
VDD_ARM requirements (see Table 9)
Figure 1. Part number nomenclature—i.MX 7Dual family of processors
1.2 Features
The i.MX 7Dual family of processors is based on Arm Cortex-A7 MPCore™ Platform, which has the
following features:
Two Arm Cortex-A7 Cores (with TrustZone® technology)
The core configuration is symmetric, where each core includes:
MCIMX7D2DVK12SD No EPDC, No CAN
2 x Gigabit Ethernet
4 tamper pins
1x ADC
1.2 GHz Consumer 0 to 85°C 12x12 mm
0.4 mm pitch
BGA
MCIMX7D2DVM12SD No EPDC, No CAN
2x Gigabit Ethernet
10 tamper pins
2x ADC
1.2 GHz Consumer 0 to 85°C 19x19mm
0.75 mm pitch
BGA
1
Consumer qualification grade assumes 5-year lifetime with 50% duty cycle.
2
Industrial qualification grade assumes 10-year lifetime with 100% duty cycle.
Table 1. Orderable parts(continued)
i.MX 7Dual introduction
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 5
32 KByte L1 Instruction Cache
32 KByte L1 Data Cache
Private Timer and Watchdog
NEON MPE (media processing engine) coprocessor
The Arm Cortex-A7 Core complex shares:
General interrupt controller (GIC) with 128 interrupt support
Global timer
Snoop control unit (SCU)
512 KB unified I/D L2 cache
Two master AXI bus interfaces output of L2 cache
Frequency of the core (including NEON and L1 cache), as per Table 9.
NEON MPE coprocessor
SIMD Media Processing Architecture
NEON register file with 32x64-bit general-purpose registers
NEON Integer execute pipeline (ALU, Shift, MAC)
NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
NEON load/store and permute pipeline
The Arm Cortex-M4 platform:
Cortex-M4 CPU core
MPU (memory protection unit)
FPU (floating-point unit)
16 KByte instruction cache
16 KByte data cache
64 KByte TCM (tightly-coupled memory)
The SoC-level memory system consists of the following additional components:
Boot ROM, including HAB (96 KB)
Internal multimedia / shared, fast access RAM (256 KB of total OCRAM)
Secure/nonsecure RAM (32 KB)
External memory interfaces: The i.MX 7Dual family of processors supports the latest,
high-volume, cost effective DRAM, NOR, and NAND Flash memory standards.
Up to 32-bit LP-DDR2-1066, DDR3-1066, DDR3L-1066, and LPDDR3-1066
8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,
BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 62 bits.
16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.
Each i.MX 7Dual processor enables the following interfaces to external devices (some of them are muxed
and not available simultaneously):
Displays—Available interfaces.
i.MX 7Dual introduction
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors6
One parallel 24-bit display port
One EPD port
One MIPI DSI port
Camera sensors:
One parallel Camera port (up to 24 bit and up to 133 MHz peak)
One MIPI-CSI port
Expansion cards:
Three MMC/SD/SDIO card ports all supporting the following. Moreover, the third port can
support HS400.
1-bit or 4-bit transfer mode specifications for SD and SDIO cards, up to 208 MHz
1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 200 MHz in both
SDR and DDR modes, including HS200 and HS400 DDR modes
•USB
:
Two high-speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY
One high-speed USB 2.0 (480 Mbps) host with integrated HSIC USB (high-speed inter-chip
USB) PHY
Expansion PCI Express port (PCIe) v. 2.1 one lane
PCI Express (Gen 2.0) dual mode complex, supporting root complex operations and endpoint
operations. Uses x1 PHY configuration.
Miscellaneous IPs and interfaces:
Three instances of SAI supporting up to three I
2
S and AC97 ports
Seven UARTs, up to 4.0 Mbps:
Providing RS232 interface
Supporting 9-bit RS485 Multidrop mode
Four eCSPI (Enhanced CSPI)
Four I
2
C, supporting 400 kbps
Two 1-gigabit Ethernet controllers (designed to be compatible with IEEE Std 1588),
10/100/1000 Mbps with AVB support
Four pulse width modulators (PWM)
System JTAG controller (SJC)
GPIO with interrupt capabilities
8x8 key pad port (KPP)
One quad SPI
Four watchdog timers (WDOG)
One (12 x 12 mm) or two (19 x 19 mm) 2-channel, 12-bit analog-to-digital converters
(ADC)—effective number of bits (ENOB) can vary (typically 9–10 bits) depending on the
system implementation and the condition of the power/ground noise condition
i.MX 7Dual introduction
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 7
The i.MX 7Dual family of processors integrates advanced power management unit and controllers:
PMU (power-management unit), multiple LDO supplies, for on-chip resources
Temperature sensor for monitoring the die temperature
Software state retention and power gating for Arm and NEON
Support for various levels of system power modes
Flexible clock gating control scheme
The i.MX 7Dual family of processors uses dedicated hardware accelerators to meet the targeted
multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance
at low power consumption numbers, while having the CPU core relatively free for performing other tasks.
The i.MX 7Dual family of processors incorporates the following hardware accelerators:
PXP—PiXel processing pipeline for imagine resize, rotation, overlay and CSC. Off loading key
pixel processing operations are required to support the LCD and EPDC display applications.
EPDC—Low-power, high-performance, direct-drive, active-matrix electrophoretic display
controller, specifically designed to drive E Ink EPD panels.
Security functions are implemented by the following hardware:
Arm TrustZone technology including separation of interrupts and memory mapping
SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or
blocking the access to the system debug features.
CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash
engines, 32 KB secure RAM, and true and pseudo random number generator.
SNVS—Secure Non-Volatile Storage, including secure real time clock
CSU—Central Security Unit. Responsible for setting comprehensive security policy of the device.
Configured during boot and by eFuses and determines the security-level operation mode as well as
the TrustZone policy.
HAB—High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256,
2048-bit RSA key, SRK revocation mechanism, warm boot, CSU, and TrustZone initialization.
NOTE
The actual feature set depends on the part numbers as described in Table 1.
Functions, such as display and camera interfaces, connectivity interfaces,
may not be enabled for specific part numbers.
|:| fi |—' | | \ \_| |:I|:I- ':'.—| :91 | | ,_‘ |:| '_‘ ‘ E E |:| |:| : |:||:| |:| E I I \:| 1 fl |:| : ‘—, |:| |:| l—H—| fl |—| \_| ' ' :' |:| |_| :| \ | Q |—\ l—|
Architectural overview
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors8
2 Architectural overview
The following subsections provide an architectural overview of the i.MX 7Dual processor system.
2.1 Block diagram
Figure 2 shows the functional modules in the i.MX 7Dual processor system.
Figure 2. i.MX 7Dual System block diagram
Debug
DAP
TPIU
CTIs
SJC
Shared Peripherals
Internal Memory
OCRAM 320KB
ROM 96KB
External Memory
DDR Controller
EIM
SPBA
PLLs
CCM
GPC
SRC
XTAL OSC
RC OSC
Timers
System Counter
Camera Interface
CSI
EPD Controller
Image Processing
Security
CSU
OCOTP (eFuse)
Power Management
LDOs
AP Peripherals
KPP
Sensors Modem IC EPD Panel PCIe Bus
Camera
LCD Panel
Tamper
Detection
Keypad
WLAN
Touch Panel
Control
GPMI&BCH
QSPI
MPU FPU
NAND FLASH
Display Interface
LCDIF
MIPI DSI
Smart DMA
SDMA
RDC MU
SEMAPHORE
NEON FPU
Temp Monitor
IOMUX
ADC (2)
LPDDR2/LPDDR3 Battery Ctrl
Device
JTAG
(IEEE1149.6)
Crystal&
Clock Source
NOR Flash
(Parallel)
CAAM
(32KB RAM)
SNVS(SRTC)
NOR FLASH
(Quad SPI)
MIPI CSI(2 lane)
USB OTG
(dev/host)
CAN x2
Pixel Processing
Pipeline(PXP)
Multi-Core Unit
TCM 64KB
I$ 16KB D$ 16KB
Cortex-M4 Core
ARM Cortex M4
Platform
L2 Cache 512KB
SCU & Timer
I$ 32KB D$ 32KB
CPU0
CPU1
ARM Cortex A7
MPCore Platform
WDOG(4)
GPT(4)
Flex Timer(2)
eCSPI(3)
SAI(3)
UART(3)
GPIO(7)
UART(4)
PWM(4)
eCSPI(1)
I2C(4)
SIMv2(2)
FlexCAN(2)
PCIe v2.1
AVB ENET(2)
uSDHC(3)
Clock & Reset
10/100/1000M
Ethernet x2
AXI and AHB Switch Fabric
MMC/SD
eMMC/eSD
MMC/SD
SDXC
/DDR3/DDR3L
Smart Card x2
OCOTP
Host (1) / OTG (2)
USB 2.0
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 9
3 Modules list
The i.MX 7Dual family of processors contains a variety of digital and analog modules. Table 2 describes
these modules in alphabetical order.
Table 2. i.MX 7Dual modules list
Block Mnemonic Block Name Subsystem Brief Description
ADC1
ADC2
Analog to Digital
Converter
The ADC is a 12-bit general purpose analog to digital
converter (ADC2 is not available in the 12x12 package).
Arm Arm Platform Arm The Arm Core Platform includes two Cortex-A7
coresand 1x Cortex-M4. It also includes associated
sub-blocks, such as the Level 2 Cache Controller, SCU
(Snoop Control Unit), GIC (General Interrupt
Controller), private timers, watchdog, and CoreSight
debug modules.
BCH Binary-BCH ECC
Processor
System control
peripherals
The BCH module provides up to 62-bit ECC
encryption/decryption for NAND Flash controller
(GPMI)
CAAM Cryptographic
accelerator and
assurance module
Security CAAM is a cryptographic accelerator and assurance
module. CAAM implements several encryption and
hashing functions, a run-time integrity checker, entropy
source generator, and a Pseudo Random Number
Generator (PRNG). The pseudo random number
generator is certifiable by Cryptographic Algorithm
Validation Program (CAVP) of National Institute of
Standards and Technology (NIST).
CAAM also implements a Secure Memory mechanism.
In i.MX 7Dual processors, the security memory
provided is 32 KB.
CCM
GPC
SRC
Clock Control Module,
General Power
Controller, System Reset
Controller
Clocks, resets, and
power control
These modules are responsible for clock and reset
distribution in the system, and also for the system
power management.
CSI Parallel CSI Multimedia
peripherals
The CSI IP provides parallel CSI standard camera
interface port. The CSI parallel data ports are up to 24
bits. It is designed to support 24-bit RGB888/YUV444,
CCIR656 video interface, 8-bit YCbCr, YUV or RGB,
and 8-bit/10-bit/16-bit Bayer data input.
CSU Central Security Unit security The Central Security Unit (CSU) is responsible for
setting comprehensive security policy within the i.MX
7Dual platform.
DAP Debug Access Port System control
peripherals
The DAP provides real-time access for the debugger
without halting the core to access:
System memory and peripheral registers
All debug configuration registers
The DAP also provides debugger access to JTAG scan
chains.
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors10
eCSPI1
eCSPI2
eCSPI3
eCSPI4
Configurable SPI Connectivity
Peripherals
Full-duplex enhanced Synchronous Serial Interface,
with data rate up to 52 Mbit/s. It is configurable to
support Master/Slave modes, four chip selects to
support multiple peripherals.
EIM NOR-Flash /PSRAM
interface
Connectivity
Peripherals
The EIM NOR-FLASH / PSRAM provides:
Support for 16-bit (in Muxed I/O mode only) PSRAM
memories (sync and async operating modes), at
slow frequency
Support for 16-bit (in muxed and non-muxed I/O
modes) NOR-Flash memories, at slow frequency
Multiple chip selects
ENET1
ENET2
Ethernet Controller Connectivity
peripherals
The Ethernet Media Access Controller (MAC) is
designed to support 10/100/1000 Mbps Ethernet/IEEE
802.3 networks. An external transceiver interface and
transceiver function are required to complete the
interface to the media. The module has dedicated
hardware to support the IEEE 1588 standard. See the
ENET chapter of the
i.MX 7Dual Application Processor
Reference Manual
(IMX7DRM) for details.
EPDC Electrophoretic
Display
Controller
Connectivity
peripherals
The EPDC is a feature-rich, low power, and
high-performance direct-drive, active matrix EPD
controller. It is specifically designed to drive E Ink EPD
panels, supporting a wide variety of TFT backplanes.
Various levels of flexibility and programmability have
been introduced, as well as hardware support for
different E Ink image enhancing algorithms, such as
Regal D waveform support.
FLEXCAN1
FLEXCAN2
Flexible Controller Area
Network
Connectivity
peripherals
The CAN protocol was primarily, but not only, designed
to be used as a vehicle serial data bus, meeting the
specific requirements of this field: real-time processing,
reliable operation in the Electromagnetic interference
(EMI) environment of a vehicle, cost-effectiveness and
required bandwidth. The FlexCAN module is a full
implementation of the CAN protocol specification,
Version 2.0 B, which supports both standard and
extended message frames.
FLEXTIMER1
FLEXTIMER2
Flexible Timer Module Timer Peripherals Provide input signal capture and PWM support
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
General Purpose I/O
Modules
System control
peripherals
Used for general purpose input/output to external ICs.
Each GPIO module supports up to 32 bits of I/O.
GPMI General Purpose Memory
Interface
Connectivity
peripherals
The GPMI module supports up to 8x NAND devices and
62-bit ECC encryption/decryption for NAND Flash
Controller (GPMI2). GPMI supports separate DMA
channels for each NAND device.
Table 2. i.MX 7Dual modules list(continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 11
GPT General Purpose Timer Timer peripherals Each GPT is a 32-bit “free-running” or “set and forget”
mode timer with programmable prescaler and compare
and capture register. A timer counter value can be
captured using an external event and can be configured
to trigger a capture event on either the leading or trailing
edges of an input pulse. When the timer is configured to
operate in “set and forget” mode, it is capable of
providing precise interrupts at regular intervals with
minimal processor intervention. The counter has output
compare logic to provide the status and interrupt at
comparison. This timer can be configured to run either
on an external clock or on an internal clock.
I2C1
I2C2
I2C3
I2C4
I
2
C Interface Connectivity
peripherals
I
2
C provide serial interface for external devices. Data
rates of up to 320 kbps are supported.
IOMUXC IOMUX Control System control
peripherals
This module enables flexible IO multiplexing. Each IO
pad has default and several alternate functions. The
alternate functions are software configurable.
KPP Key Pad Port Connectivity
peripherals
KPP Supports 8x8 external key pad matrix. KPP
features are:
Open drain design
Glitch suppression circuit design
Multiple keys detection
Standby key press detection
LCDIF LCD interface Multimedia
peripherals
The LCDIF is a general purpose display controller used
to drive a wide range of display devices varying in size
and capability. The LCDIF is designed to support dumb
(synchronous 24-bit Parallel RGB interface).
MIPI-CSI
(two-lane)
MIPI Camera Interface Multimedia
peripherals
This module provides a two-lane MIPI camera interface
operating up to a maximum bit rate of 1.5 Gbps.
MIPI DSI
(two-lane)
MIPI Display Interface Connectivity
peripherals
This module provides a two-lane MIPI display interface
operating up to a maximum bit rate of 1.5 Gbps.
DDRC DDR Controller Connectivity
peripherals
The DDR Controller has the following features:
Supports 16/32-bit DDR3/DDR3L, LPDDR3, and
LPDDR2-1066
Supports up to 2 Gbyte DDR memory space
MQS Medium-quality sound
module
Multimedia
peripherals
MQS is used to generate 2-channel, medium-quality,
PWM-like audio, via two standard digital GPIO pins.
The electronic specification is the same as the GPIO
digital output.
Table 2. i.MX 7Dual modules list(continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors12
OCOTP_CTRL OTP Controller Security The On-Chip OTP controller (OCOTP_CTRL) provides
an interface for reading, programming, and/or
overriding identification and control information stored
in on-chip fuse elements. The module supports
electrically-programmable poly fuses (eFUSEs). The
OCOTP_CTRL also provides a set of volatile
software-accessible signals that can be used for
software control of hardware elements, not requiring
non-volatility. The OCOTP_CTRL provides the primary
user-visible mechanism for interfacing with on-chip fuse
elements. Among the uses for the fuses are unique chip
identifiers, mask revision numbers, cryptographic keys,
JTAG secure mode, boot characteristics, and various
control signals, requiring permanent non-volatility.
OCRAM On-Chip Memory
controller
Data path The On-Chip Memory controller (OCRAM) module is
designed as an interface between system’s AXI bus
and internal (on-chip) SRAM memory module.
In i.MX 7Dual processors, the OCRAM is used for
controlling the 128 KB multimedia RAM through a 64-bit
AXI bus.
PCIe PCI Express 2.0 Connectivity
peripherals
The PCIe IP provides PCI Express Gen 2.0
functionality.
PMU Power Management Unit Data path Integrated power management unit. Used to provide
power to various SoC domains.
PWM1
PWM2
PWM3
PWM4
Pulse Width Modulation Connectivity
peripherals
The pulse-width modulator (PWM) has a 16-bit counter
and is optimized to generate sound from stored sample
audio images and it can also generate tones. It uses
16-bit resolution and a 4x16 data FIFO to generate
sound.
PXP PiXel Processing Pipeline Display peripherals A high-performance pixel processor capable of 1
pixel/clock performance for combined operations, such
as color-space conversion, alpha blending,
gamma-mapping, and rotation. The PXP is enhanced
with features specifically for gray scale applications. In
addition, the PXP supports traditional pixel/frame
processing paths for still-image and video processing
applications, allowing it to interface with the integrated
EPD.
Table 2. i.MX 7Dual modules list(continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 13
QSPI Quad SPI Connectivity
peripherals
Quad SPI module act as an interface to external serial
flash devices. This module contains the following
features:
Flexible sequence engine to support various flash
vendor devices
Single pad/Dual pad/Quad pad mode of operation
Single Data Rate/Double Data Rate mode of
operation
Parallel Flash mode
DMA support
Memory mapped read access to connected flash
devices
Multi-master access with priority and flexible and
configurable buffer for each master
SAI1
SAI2
SAI3
Synchronous Audio
Interface
Connectivity
peripherals
The SAI module provides a synchronous audio
interface (SAI) that supports full duplex serial interfaces
with frame synchronization, such as I
2
S, AC97, TDM,
and codec/DSP interfaces.
SDMA Smart Direct Memory
Access
System control
peripherals
The SDMA is a multichannel flexible DMA engine. It
helps in maximizing system performance by offloading
the various cores in dynamic data routing. It has the
following features:
Powered by a 16-bit Instruction-Set micro-RISC
engine
Multi-channel DMA supporting up to 32 time-division
multiplexed DMA channels
48 events with total flexibility to trigger any
combination of channels
Memory accesses including linear, FIFO, and 2D
addressing
Shared peripherals between Arm and SDMA
Very fast Context-Switching with 2-level priority
based preemptive multi-tasking
DMA units with auto-flush and prefetch capability
Flexible address management for DMA transfers
(increment, decrement, and no address changes on
source and destination address)
DMA ports can handle unidirectional and
bidirectional flows (Copy mode)
Up to 8-word buffer for configurable burst transfers
for EMIv2.5
Support of byte-swapping and CRC calculations
Library of Scripts and API is available
SIMv2-1
SIMv2-2
Smart Card Connectivity
peripherals
Smart card interface designed to be compatible with
ISO7816.
Table 2. i.MX 7Dual modules list(continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors14
SJC System JTAG Controller System control
peripherals
The SJC provides JTAG interface (designed to be
compatible with JTAG TAP standards) to internal logic.
The i.MX 7Dual family of processors uses JTAG port for
production, testing, and system debugging.
Additionally, the SJC provides BSR (Boundary Scan
Register) standard support, designed to be compatible
with IEEE 1149.1 and IEEE1149.6 standards.
The JTAG port must be accessible during platform
initial laboratory bring-up, for manufacturing tests and
troubleshooting, as well as for software debugging by
authorized entities. The i.MX 7Dual SJC incorporates
three security modes for protecting against
unauthorized accesses. Modes are selected through
eFUSE configuration.
SNVS Secure Non-Volatile
Storage
Security Secure Non-Volatile Storage, including Secure Real
Time Clock, Security State Machine, Master Key
Control, and Violation/Tamper Detection and reporting.
TEMPSENSOR Temperature Sensor System control
peripherals
Temperature sensor
TZASC Trust-Zone Address
Space Controller
Security The TZASC (TZC-380 by Arm) provides security
address region control functions required for intended
application. It is used on the path to the DRAM
controller.
UART1
UART2
UART3
UART4
UART5
UART6
UART7
UART Interface Connectivity
peripherals
Each of the UARTv2 modules support the following
serial data transmit/receive protocols and
configurations:
7- or 8-bit data words, 1 or 2 stop bits, programmable
parity (even, odd or none)
Programmable baud rates up to 4 Mbps. This is a
higher max baud rate relative to the 1.875 MHz,
which is stated by the TIA/EIA-232-F standard.
32-byte FIFO on Tx and 32 half-word FIFO on Rx
supporting auto-baud
Table 2. i.MX 7Dual modules list(continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 15
uSDHC1
uSDHC2
uSDHC3
SD/MMC and SDXC
Enhanced Multi-Media
Card / Secure Digital Host
Controller
Connectivity
peripherals
i.MX 7Dual SoC characteristics:
All the MMC/SD/SDIO controller IPs are based on the
uSDHC IP. They are designed to be:
Fully compatible with MMC command/response sets
and Physical Layer as defined in the Multimedia
Card System Specification,
v5.0/v4.4/v4.41/v4.4/v4.3/v4.2.
Fully compatible with SD command/response sets
and Physical Layer as defined in the SD Memory
Card Specifications v 3.0 including high-capacity
SDXC cards up to 2 TB.
Fully compatible with SDIO command/response sets
and interrupt/Read-Wait mode as defined in the
SDIO Card Specification, Part E1, v. 3.0
All the ports support:
1-bit or 4-bit transfer mode specifications for SD and
SDIO cards up to UHS-I SDR104 mode (104 MB/s
max)
1-bit, 4-bit, or 8-bit transfer mode specifications for
MMC cards up to 200 MHz in both SDR and DDR
modes, including HS200 and HS400.
However, the SoC level integration and I/O muxing logic
restrict the functionality to the following:
uSDHC1 and uSDHC2 are primarily intended to
serve as external slots or interfaces to on-board
SDIO devices. These ports are equipped with “Card
detection” and “Write Protection” pads and do not
support hardware reset.
uSDHC3 is primarily intended to serve interfaces to
embedded MMC memory or interfaces to on-board
SDIO devices. These ports do not have “Card
detection” and “Write Protection” pads and do
support hardware reset.
All ports can work with 1.8 V and 3.3 V cards. There
are two completely independent I/O power domains
for uSDHC1 and uSDHC2 in 4-bit configuration (SD
interface). uSDHC3 is placed in his own independent
power domain.
USBOTG2 2x USB 2.0 High Speed
OTG and HSIC USB
Connectivity
peripherals
USBOTG2 contains:
Two high-speed OTG modules with integrated HS
USB PHYs
One high-speed Host module connected to HSIC
USB port.
Table 2. i.MX 7Dual modules list(continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors16
3.1 Special signal considerations
Table 3 lists special signal considerations for the i.MX 7Dual family of processors. The signal names are
listed in alphabetical order.
WDOG1
WDOG3
WDOG4
Watchdog Timer peripherals The Watch dog timer supports two comparison points
during each counting period. Each of the comparison
points is configurable to evoke an interrupt to the Arm
core, and a second point evokes an external event on
the WDOG line.
WDOG2
(TrustZone)
Watchdog (TrustZone
technology)
Timer peripherals The TrustZone Watchdog (TZ WDOG) timer module
protects against TrustZone starvation by providing a
method of escaping Normal mode and forcing a switch
to the TZ mode. TZ starvation is a situation where the
normal OS prevents switching to the TZ mode. Such
situation is undesirable as it can compromise the
system’s security. Once the TZ WDOG module is
activated, it must be serviced by TZ software on a
periodic basis. If servicing does not take place, the
timer times out. Upon a time-out, the TZ WDOG asserts
a TZ mapped interrupt that forces switching to the TZ
mode. If it is still not served, the TZ WDOG asserts a
security violation signal to the CSU. The TZ WDOG
module cannot be programmed or deactivated by a
normal mode SW.
Table 2. i.MX 7Dual modules list(continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 17
The package contact assignments can be found in Section 6, “Package information and contact
assignments.” Signal descriptions are provided in the i.MX 7Dual Application Processor Reference
Manual (IMX7DRM).
Table 3. Special signal considerations
Signal Name Remarks
CCM_CLK1_P/
CCM_CLK1_N
CCM_CLK2
One general purpose differential high speed clock input/output and one single-ended clock input
are provided.
Either or both of them can be used:
To feed an external reference clock to the PLLs and to the modules inside the SoC, for
example, as an alternate reference clock for PCIe, Video/Audio interfaces and so forth.
To output the internal SoC clock to be used outside the SoC as either a reference clock or as
a functional clock for peripherals; for example, it can be used as an output of the PCIe master
clock (root complex use)
See the
i.MX 7Dual Application Processor Reference Manual
(IMX7DRM) for details on the
respective clock trees.
The CCM_CLK1_* inputs/outputs are an LVDS differential pair.
Alternatively, a single-ended signal may be used to drive CCM_CLK1_P input. In this case
corresponding CCM_CLK1_N input should be tied to the constant voltage level equal to 1/2 of the
input signal swing.
Termination should be provided in case of high frequency signals.
See the LVDS pad electrical specification for further details. CCM_CLK2 is a single-ended input
referenced to ground.
After initialization:
The CCM_CLK1_* inputs/outputs can be disabled if not used. Any of the unused CCM_CLK1_*
pins may be left floating.
The CCM_CLK2 input should be grounded if not used.
RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz
crystal, (100 k ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO. It
is recommended to use the configurable load capacitors provided in the IP instead of adding them
externally. To hit the exact oscillation frequency, the configurable capacitors need to be reduced
to account for board and chip parasitics.
The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit
parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (>100 M). This will
debias the amplifier and cause a reduction of startup margin. Typically RTC_XTALI and
RTC_XTALO should bias to approximately 0.5 V.
If it is desired to feed an external low frequency clock into RTC_XTALI, the RTC_XTALO pin
should be left floating or driven with a complimentary signal. The logic level of this forcing clock
should not exceed VDD_SNVS_CAP level.
In the case when a high-accuracy realtime clock is not required, the system may use internal low
frequency oscillator. It is recommended to connect RTC_XTALI to ground and keep RTC_XTALO
floating. This will however result in increased power consumption, because the internal oscillator
uses higher power than the RTC oscillator. Thus for lowest power configuration it is recommended
to always install a crystal.
XTALI/XTALO A 24.0 MHz crystal should be connected between XTALI and XTALO.
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors18
DRAM_VREF When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the
NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use
a 1 kΩ0.5% resistor to GND and a 1 kΩ0.5% resistor to NVCC_DRAM. Shunt each resistor with
a closely-mounted 0.1 µF capacitor.
To reduce supply current, a pair of 1.5 kΩ0.1% resistors can be used. Using resistors with
recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification)
is maintained when four DDR3 ICs plus the i.MX 7Dual are drawing current on the resistor divider.
It is recommended to use regulated power supply for “big” memory configurations (more than
eight devices)
ZQPAD DRAM calibration resistor 240 Ω1% used as reference during DRAM output buffer driver
calibration should be connected between this pad and GND.
PCIE_VPH/PCIE_VPH_TX/
PCIE_VPH_RX
Short these pins to VDDA_PHY1P8 if using PCIe. User can tie these pins to ground if not using
PCIe.
PCIE_VP/PCIE_VP_TX/PC
IE_VP_RX
Short these pins to VDDD_1P0CAP if using PCIe. User can tie these pins to ground with a 10 KΩ
resistor if not using PCIe.
VDDA_MIPI_1P8 Short these pins to VDDA_PHY_1P8 if using MIPI. User can leave these pins floating or grounded
if not using MIPI.
VDD_MIPI_1P0 Short these pins to VDDD_1P0_CAP if using MIPI. User can leave these pins floating or grounded
if not using MIPI.
GPANAIO This signal is reserved for manufacturing use only. User must leave this connection floating.
JTAG_
nnnn
The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However,
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is
followed. For example, do not use an external pull down on an input that has on-chip pull-up.
JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an
external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and
should be avoided.
JTAG_MOD is referenced as SJC_MOD in the
i.MX 7Dual Application Processor Reference
Manual
(IMX7DRM). Both names refer to the same signal. JTAG_MOD must be externally
connected to GND for normal operation. Termination to GND through an external pull-down
resistor (such as 1 kΩ) is allowed. JTAG_MOD set to high configures the JTAG interface to a
mode compatible with the IEEE 1149.1 standard. JTAG_MOD set to low configures the JTAG
interface for common SW debug adding all the system TAPs to the chain.
NC Do not connect. These signals are reserved and should be floated by the user.
POR_B This cold reset negative logic input resets all modules and logic in the IC.
May be used in addition to internally generated power on reset signal (logical AND, both internal
and external signals are considered active low).
ONOFF In Normal mode, may be connected to ON/OFF button (De-bouncing provided at this input).
Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power
management state machine to change state to ON. In ON mode short connection to GND
generates interrupt (intended to SW controllable power down). Long above ~5s connection to
GND causes “forced” OFF.
TEST_MODE TEST_MODE is for factory use. This signal is internally connected to an on-chip pull-down device.
The user must tie this signal to GND.
Table 3. Special signal considerations(continued)
Signal Name Remarks
Modules list
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 19
3.2 Recommended connections for unused analog interfaces
Table 5 shows the recommended connections for unused analog interfaces.
PCIE_REXT The impedance calibration process requires connection of reference resistor 4.7 KΩ1% precision
resistor on PCIE_REXT pad to ground.
USB_OTG1_REXT/USB_O
TG2_REXT
The bias generation and impedance calibration process for the USB OTG PHYs requires
connection of 200 Ω (1% precision) reference resistors on each of the USB_OTG1_REXT and
USB_OTG2_REXT pads to ground.
USB_OTG1_CHD_B An external pullup resistor with value in range from 10 kΩ to 100 kΩ should be connected
between open-drain output USB_OTG1_CHD_B and supply VDD_USB_OTG1_3P3_IN for 3.3 V
signaling. Optionally, a similarly valued pullup resistor could be connected instead between
USB_OTG1_CHD_B and an unrelated supply up to 1.8 V, but in that case the output is only valid
when both that supply and VDD_USB_OTG1_3P3_IN are powered.
TEMPSENSOR_REXT External 100 KΩ (1% precision) resistor connection pin
Table 4. JTAG controller interface summary
JTAG I/O Type On-chip Termination
JTAG_TCK Input 47 kΩ
pull-up
JTAG_TMS Input 47 kΩ
pull-up
JTAG_TDI Input 47 kΩ
pull-up
JTAG_TDO 3-state output 100 kΩ pull-up
JTAG_TRSTB Input 47 kΩ
pull-up
JTAG_MOD Input 100 kΩ
pull-up
Table 5. Recommended connections for unused analog interfaces
Module Package Net Name Recommendation
if Unused
ADC VDDA_ADC2_1P8, VDDA_ADC2_1P8, VDDA_ADC1_1P8,
VDDA_ADC1_1P8
1.8 V
ADC2_IN3, ADC2_IN2, ADC2_IN1, ADC2_IN0, ADC1_IN0,
ADC1_IN1, ADC1_IN2, ADC1_IN3
Tie to ground
LDO VDD_1P2_CAP Floating if USB_HSIC is not used
MIPI VDD_MIPI_1P0, VDDA_MIPI_1P8 Floating or tie to ground
MIPI_DSI_D0_N, MIPI_DSI_D0_P, MIPI_VREG_0P4V,
MIPI_DSI_CLK_N, MIPI_DSI_CLK_P, MIPI_DSI_D1_N,
MIPI_DSI_D1_P, MIPI_CSI_D0_N, MIPI_CSI_D0_P,
MIPI_CSI_CLK_N, MIPI_CSI_CLK_P, MIPI_CSI_D1_N,
MIPI_CSI_D1_P
No connect
Table 3. Special signal considerations(continued)
Signal Name Remarks
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors20
4 Electrical characteristics
This section provides the device and module-level electrical characteristics for the i.MX 7Dual family of
processors.
4.1 Chip-level conditions
This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference
to the individual tables and sections.
PCIe PCIE_REFCLKIN_N, PCIE_REFCLKIN_P,
PCIE_REFCLKOUT_N, PCIE_REFCLKOUT_P,
PCIE_RX_N, PCIE_RX_P, PCIE_TX_N, PCIE_TX_P
Floating
PCIE_VP,PCIE_VP_RX,PCIE_VP_TX,
PCIE_VPH,PCIE_VPH_RX,PCIE_VPH_TX, PCIE_REXT
Tie to ground
SNVS SNVS_TAMPER00, SNVS_TAMPER01, SNVS_TAMPER02,
SNVS_TAMPER03, SNVS_TAMPER04, SNVS_TAMPER05,
SNVS_TAMPER06, SNVS_TAMPER07, SNVS_TAMPER08,
SNVS_TAMPER09
Float—configure with software
Temperature sensor TEMPSENSOR_REXT Tie to ground or pulldown with 100 KΩ
resistor
TEMPSENSOR_RESERVE Floating
VDD_TEMPSENSOR_1P8 1.8 V
USB HSIC VDD_USB_H_1P2 Tie to ground
USB_H_DATA, USB_H_STROBE Floating
USB OTG1 VDD_USB_OTG1_3P3_IN, VDD_USB_OTG1_1P0_CAP Tie to ground
USB_OTG1_VBUS, USB_OTG1_DP, USB_OTG1_DN,
USB_OTG1_ID, USB_OTG1_REXT, USB_OTG1_CHD_B
Floating
USB OTG2 VDD_USB_OTG2_3P3_IN, VDD_USB_OTG2_1P0_CAP Tie to ground
USB_OTG2_VBUS, USB_OTG2_DP, USB_OTG2_DN,
USB_OTG2_ID, USB_OTG2_REXT
Floating
Table 6. i.MX 7Dual Chip-level conditions
For these characteristics, … Topic appears …
Absolute maximum ratings on page 21
FPBGA case “X” and case “Y” package thermal resistance on page 22
Operating ranges on page 23
External clock sources on page 25
Table 5. Recommended connections for unused analog interfaces(continued)
Module Package Net Name Recommendation
if Unused
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 21
4.1.1 Absolute maximum ratings
CAUTION
Stresses beyond those listed under Table 7 may affect reliability or cause
permanent damage to the device. These are stress ratings only. Functional
operation of the device at these or any other conditions beyond those
indicated in the operating ranges or parameters tables is not implied.
Maximum supply currents on page 26
Power modes on page 29
USB PHY Suspend current consumption on page 32
Table 7. Absolute maximum ratings
Parameter Description Symbol Min Max Unit
Core supply voltages VDD_ARM
VDD_SOC
–0.5 1.5 V
GPIO supply voltage NVCC_ENET1
NVCC_EPDC1
NVCC_EPDC2
NVCC_I2C
NVCC_LCD
NVCC_SAI
NVCC_SD1
NVCC_SD2
NVArmCC_SD3
NVCC_SPI
NVCC_UART
–0.3 3.6 V
DDR I/O supply voltage NVCC_DRAM –0.3 1.975 V
Clock I/O supply voltage NVCC_DRAM_CKE –0.3 1.98 V
VDD_SNVS_IN supply voltage VDD_SNVS_IN –0.3 3.6 V
USB OTG PHY supply voltage VDD_USB_OTG1_3P3_IN
VDD_USB_OTG2_3P3_IN
–0.3 3.6 V
USB_VBUS input detected USB_OTG1_VBUS
USB_OTG2_VBUS
–0.3 5.25 V
Input voltage on USB_OTG*_DP, USB_OTG*_DN
pins
USB_OTG1_DP/USB_OTG1_DN
USB_OTG2_DP/USB_OTG2_DN
–0.3 3.63 V
USB_OTG1_CHD_B open-drain pullup voltage
when external pullup resistor is connected to
VDD_USB_OTG1_3P3_IN supply only
USB_OTG1_CHD_B 3.6 V
Table 6. i.MX 7Dual Chip-level conditions(continued)
For these characteristics, … Topic appears …
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors22
4.1.2 Thermal resistance
4.1.2.1 FPBGA case “X” and case “Y” package thermal resistance
Table 8 displays the thermal resistance data.
Per JEDEC JESD51-2, the intent of thermal resistance measurements is solely for a thermal performance
comparison of one package to another in a standardized environment. This methodology is not meant to
and does not predict the performance of a package in an application-specific environment.
USB_OTG1_CHD_B open-drain pullup voltage
when external pullup resistor is connected to any
supply other than VDD_USB_OTG1_3P3_IN
USB_OTG2_CHD_B 1.975 V
Input/output voltage range V
in
/V
out
–0.3 OVDD
1
+0.3 V
ESD damage immunity: V
esd
V
Human Body Model (HBM)
Charge Device Model (CDM)
2000
500
Storage temperature range T
STORAGE
–40 150
o
C
1
OVDD is the I/O supply voltage.
Table 8. Thermal Resistance Data
Rating Test conditions Symbol 12x12
pkg value
19x19
pkg value Unit
Junction to Ambient
1
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
Single-layer board (1s); natural convection
2
Four-layer board (2s2p); natural convection
2
2
Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified
package.
R
θJA
R
θJA
55.4
32.6
44.4
30.2
o
C/W
o
C/W
Junction to Ambient
1
Single-layer board (1s); airflow 200 ft/min
2,3
Four-layer board (2s2p); airflow 200 ft/min
2,3
3
Per JEDEC JESD51-6 with the board horizontal.
R
θJA
R
θJA
41.8
28.0
34.3
25.8
o
C/W
o
C/W
Junction to Board
1,4
4
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
—R
θJB
16.0 17.4
o
C/W
Junction to Case
1,5
—R
θJC
10.5 10.4
o
C/W
Junction to Package Top
1,6
Natural Convection Ψ
JT
0.2 0.2
o
C/W
Junction to Package Bottom Natural Convection R
θB_CSB
15.3 17.3
o
C/W
Table 7. Absolute maximum ratings(continued)
Parameter Description Symbol Min Max Unit
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 23
4.1.3 Operating ranges
Table 9 provides the operating ranges of the i.MX 7Dual family of processors. For details on the chip's
power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 7Dual Application
Processor Reference Manual (IMX7DRM).
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
6
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Table 9. Operating ranges
Parameter
Description Symbol Min Typ Max
1
Unit Comment
Run Mode VDD_ARM 0.95 1.0 1.25 V Operation at 800 MHz and
below
1.045 1.1 1.25 V Operation between 800 MHz
and 1 GHz
1.2 1.225 1.25 V Operation between 1.0 GHz
and 1.2 GHz. See Tabl e 1 for
maximum frequencies.
VDD_SOC 0.95 1.0 1.25 V
Standby/
Deep Sleep
mode
VDD_ARM 0 1.0 1.25 V See Table 14, “Power modes,
on page 29.
VDD_SOC 0.95 1.0 1.155 V
Power
Supply
Analog
Domain and
LDOs
VDDA_1P8 1.71 1.8 1.89 V Power for analog LDO and
internal analog blocks. Must
match the range of voltages
that the rechargeable backup
battery supports.
Backup
battery
supply range
VDD_SNVS_IN 2.4 3.0 3.6 V
LDO for
Low-Power
State
Retention
mode
VDD_LPSR 1.71 1.8 1.89 V Power rail for Low Power State
Retention mode
Supply for 24
MHz crystal
VDD_XTAL_1P8 1.650 1.8 1.950 V
Temperature
sensor
VDD_TEMPSENSOR 1.710 1.8 1.890 V
USB supply
voltages
VDD_USB_OTG1_3
P3_IN
3.0 3.3 3.6 V This rail is for USB
VDD_USB_OTG2_3
P3_IN
3.0 3.3 3.6 V This rail is for USB
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors24
DDR I/O
supply
voltage
NVCC_DRAM,
NVCC_DRAM_CKE
1.14 1.2 1.3 V LPDDR2, LPDDR3
1.425 1.5 1.575 V DDR3
1.283 1.35 1.45 V DDR3L
DRAM_VREF 0.49 ×
NVCC_DRAM)
0.5 ×
NVCC_DRAM
0.51 ×
NVCC_DRAM
V Set to one-half NVCC_DRAM
GPIO supply
voltages
NVCC_ENET1
NVCC_EPDC1
NVCC_EPDC2
NVCC_I2C
NVCC_LCD
NVCC_SAI
NVCC_SD1
NVCC_SD2
NVCC_SD3
NVCC_SPI
NVCC_UART
1.65,
3.0
1.8,
3.3
1.95,
3.6
V—
NVCC_GPIO1 1.65
3.0
1.8,
3.3
1.95,
3.6
V Power for GPIO1_DATA00 ~
GPIO1_DATA07
NVCC_GPIO2 1.65
3.0
1.8,
3.3
1.95,
3.6
V Power for GPIO1_DATA08 ~
GPIO1_DATA15 and JTAG
port
Voltage rails
supplied from
internal LDO
PCIE_VPH
PCIE_VPH_RX
PCIE_VPH_TX
VDDA_MIPI_1P8
1.71 1.8 1.89 V Supplied from
VDDA_PHY_1P8
PCIE_VP
PCIE_VP_RX
PCIE_VP_TX
VDD_MIPI_1P0
0.95 1.0 1.050 V Supplied from
VDDD_CAP_1P0
VDD_USB_H_1P2 1.150 1.2 1.250 V Supplied from VDD_1P2_CAP
Temperature
sensor
accuracy
T
delta
±3 °C Typical accuracy over the
range –40°C to 125°C
A/D converter VDDA_ADC1_1P8 1.71 1.8 1.89 V
VDDA_ADC2_1P8 1.71 1.8 1.89 V
Fuse power FUSE_FSOURCE 1.710 1.8 1.890 V Power supply for internal use
Junction
temperature,
industrial
TJ
-20 — 105
o
C See Ta ble 1 for complete list of
junction temperature
capabilities.
1
Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the
supply tolerance) is recommended. This results in an optimized power/speed ratio. Operating a voltage of 1.2V and above will
reduce the overall lifetime of the part. For details, see
i.MX 7Dual/Solo Product Lifetime Usage
(AN5334).
Table 9. Operating ranges(continued)
Parameter
Description Symbol Min Typ Max
1
Unit Comment
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 25
Table 10 shows on-chip LDO regulators that can supply on-chip loads.
4.1.4 External clock sources
Each i.MX 7Dual processor has two external input system clocks: a low frequency (RTC_XTALI) and a
high frequency (XTALI).
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is
an internal resistor-capacitor (RC) oscillator, which can be used instead of the RTC_XTALI if accuracy is
not important.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either an external oscillator or a crystal using
internal oscillator amplifier.
Table 11 shows the interface frequency requirements.
Table 10. On-chip LDOs
1
and their on-chip loads
1
On-chip LDOs are designed to supply i.MX 7Dual loads and must not be used to supply external loads.
Voltage Source Load Comment
VDDD_1P0_CAP VDD_MIPI_1P0 Connect directly (short) via board level
PCIE_VP
PCIE_VP_RX
PCIE_VP_TX
VDD_1P2_CAP VDD_USB_H_1P2 Connect directly (short) via board level
VDDA_PHY_1P8 VDDA_MIPI_1P8 Connect directly (short) via board level
PCIE_VPH
PCIE_VPH_RX
PCIE_VPH_TX
Table 11. External input clock frequency
Parameter Description Symbol Min Typ Max Unit
RTC_XTALI Oscillator
1,2
1
External oscillator or a crystal with internal oscillator amplifier.
2
The required frequency stability of this clock source is application dependent. See
Hardware Development Guide for
i.MX7Dual and 7Solo Applications Processors.
f
ckil
—32.768
3
3
Recommended nominal frequency 32.768 kHz.
—kHz
XTALI Oscillator
2,4
4
External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier.
f
xtal
24 MHz
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors26
The typical values shown in Table 11 are required for use with NXP BSPs to ensure precise time keeping
and USB operation. For RTC_XTALI operation, two clock sources are available. If there is not an
externally applied oscillator to RTC_XTALI, the internal oscillator takes over.
On-chip 32 kHz RC oscillator—this clock source has the following characteristics:
Approximately 25 µA more I
DD
than crystal oscillator
Approximately ±10% tolerance
No external component required
Starts up faster than 32 kHz crystal oscillator
Three configurations for this input:
External oscillator
External crystal coupled to RTC_XTALI and RTC_XTALO
Internal oscillator
External crystal oscillator with on-chip support circuit:
At power up, RC oscillator is utilized. After crystal oscillator is stable, the clock circuit
switches over to the crystal oscillator automatically.
Higher accuracy than RC oscillator
If no external crystal is present, then the RC oscillator is utilized
The decision of choosing a clock source should be taken based on real-time clock use and precision
timeout.
4.1.5 Maximum supply currents
The Power Virus numbers shown in Table 12 represent a use case designed specifically to show the
maximum current consumption possible. All cores are running at the defined maximum frequency and are
limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a
very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention
was to specifically show the worst case power consumption.
The MC3xPF3000xxxx, NXP’s power management IC targeted for the i.MX 7Dual family of processors,
supports the Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust
thermal design is required for the increased system power dissipation.
Table 12 represents the maximum momentary current transients on power lines, and should be used for
power supply selection. Maximum currents are higher by far than the average power consumption of
typical use cases. For typical power consumption information, see the application note, i.MX 7DS Power
Consumption Measurement (AN5383).
Table 12. Maximum supply currents
Power Rail Source Conditions Max Current Unit
VDD_ARM From PMIC 500 mA
VDD_SOC From PMIC 1000 mA
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 27
VDDA_1P8_IN From PMIC 150
1
mA
VDD_SNVS_IN From PMIC or Coin cell 1 mA
VDD_XTAL_1P8 From PMIC 5 mA
VDD_LPSR_IN From PMIC 5 mA
VDD_TEMPSENSOR_1P8 From PMIC 1 mA
VDDA_ADC1_1P8 From PMIC 5 mA
VDDA_ADC2_1P8 From PMIC 5 mA
FUSE_FSOURCE From PMIC 150 mA
VDD_MIPI_1P0 From i.MX 7 internal LDO 80 mA
PCIE_VP From i.MX 7 internal LDO 70 mA
PCIE_VP_RX From i.MX 7 internal LDO 35 mA
PCIE_VP_TX From i.MX 7 internal LDO 35 mA
PCIE_VPH From i.MX 7 internal LDO 25 mA
PCIE_VPH_RX From i.MX 7 internal LDO 15 mA
PCIE_VPH_TX From i.MX 7 internal LDO 15 mA
NVCC_GPIO1 From PMIC N=12 Use max IO
equation
2
mA
NVCC_GPIO2 From PMIC N=14 mA
NVCC_SD2 From PMIC N=9 mA
NVCC_SD3 From PMIC N=12 mA
NVCC_SD1 From PMIC N=9 mA
NVCC_ENET1 From PMIC N=16 mA
NVCC_EPDC1 From PMIC N=16 mA
NVCC_EPDC2 From PMIC N=17 mA
NVCC_SAI From PMIC N=11 mA
NVCC_LCD From PMIC N=29 mA
NVCC_SPI From PMIC N=8 mA
NVCC_ECSPI From PMIC N=8 mA
NVCC_I2C From PMIC N=8 mA
NVCC_UART From PMIC N=8 mA
VDD_USB_OTG1_3P3_IN From PMIC 50 mA
VDD_USB_OTG2_3P3_IN From PMIC 50 mA
VDD_USB_H_1P2 From i.MX 7 internal LDO 20 mA
VDDA_MIPI_1P8 From i.MX 7 internal LDO 5 mA
Table 12. Maximum supply currents(continued)
Power Rail Source Conditions Max Current Unit
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors28
4.1.6 Power modes
The i.MX 7Dual has the following power modes:
OFF mode: all power rails are off
SNVS mode: only RTC and tamper detection logic is active
LPSR mode: an extension of SNVS mode, with 16 GPIOs in low power state retention mode
RUN Mode: all external power rails are on, CPU is active and running, other internal module can
be on/off based on application;
Low Power mode (System Idle, Low Power Idle, and Deep Sleep): most external power rails are
still on, CPU is in WFI state or power gated, most of the internal modules are clock gated or power
gated
DRAM_VREF From PMIC 1 mA
NVCC_DRAM_CKE From PMIC 30 mA
NVCC_DRAM From PMIC
3
mA
1
The actual maximum current drawn from VDDA_1P8_IN is as shown plus any additional current drawn from the
VDDD_1P0_CAP, VDD_1P2_CAP, VDDA_PHY_1P8 outputs, depending on actual application configuration (for example,
VDD_MIPI_1P0, VDD_USB_H_1P2 and PCIE_VP/VPH supplies).
2
General equation for estimated, maximal power consumption of an I/O power supply:
I
max
= N × C × V × (0.5 × F)
where:
N = Number of I/O pins supplied by the power line
C = Equivalent external capacitive load
V = IO voltage
(0.5 × F) = Data change rate, up to 0.5 of the clock rate (F)
In this equation, I
max
is in amps, C in farads, V in volts, and F in hertz.
3
The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators
are typically available from the memory vendors. They take into account factors such as signal termination. See the application
note,
i.MX 7DS Power Consumption Measurement
(AN5383) for examples of DRAM power consumption during specific use
case scenarios.
Table 12. Maximum supply currents(continued)
Power Rail Source Conditions Max Current Unit
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 29
The valid power mode transition is shown in this diagram.
Figure 3. i.MX 7Dual Power Modes
The power mode transition condition is defined in the following table.
The following table summarizes the external power supply state in all the power modes.
Table 13.
Power Mode Transition
Transition From To Condition
1 OFF RUN VDD_SVNS_IN supply present.
2 SNVS OFF VDD_SNVS_IN supply removal.
3 RUN SNVS ONOFF long press, or SW.
4 SNVS RUN ONOFF press, or RTC, or tamper event.
5 RUN LPSR SW.
6 LPSR RUN ONOFF press, or RTC, or tamper event, or GPIO event.
7 RUN Low Power SW (CPU execute WFI)
8 Low Power RUN RTC, tamper event, IRQ.
Table 14. Power modes
Power rail OFF SVNS LPSR RUN Low Power
VDD_ARM OFF OFF OFF ON ON/ OFF
VDD_SOC OFF OFF OFF ON ON
VDDA_1P8_IN OFF OFF OFF ON ON
VDD_SNVS_IN OFF ON ON ON ON
VDD_LPSR_IN OFF OFF ON ON ON
NVCC_GPIO1/2 OFF OFF ON ON ON
NVCC_DRAM OFF OFF OFF ON ON
OFF RUN
SNVS LPSR
Low
Power
1
23
4
5
6
7
8
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors30
The NVCC_DRAM_CKE can be still ON during SNVS/LPSR mode to keep the CKE/RESET pad in
correct state to hold DRAM device in self-refresh mode.
The NVCC_XXX can be off in RUN mode / Low Power mode if all the pads in that IO bank is not used
in the application, the NVCC_XXX supply could be tied to GND.
The VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN are fully asynchronous to other power
rails, so it can be either ON/OFF in any of the power modes.
4.1.6.1 OFF Mode
In OFF mode, all the power rails are shut off.
4.1.6.2 SNVS Mode
SNVS mode is also called RTC mode, where only the power for the SNVS domain remain on. In this
mode, only the RTC and tamper detection logic is still active.
The power consumption in SNVS model with all the tamper detection logic enabled will be less than
5 uA @ 3.0 V on VDD_SNVS_IN for typical silicon at 25°C.
The external DRAM device can keep in self-refresh when the chip stays in SNVS mode with
NVCC_DRAM_CKE still powered. During the state transition between SNVS mode to/from ON mode,
the DRAM_CKE pad and DRAM_RESET pad has to always stay in correct state to keep DRAM in
self-refresh mode. No glitch / floating is allowed.
4.1.6.3 LPSR Mode
LPSR is considered as an extension of the SNVS mode. All the features supported in SNVS mode is also
supported in LPSR mode, including the capability of keeping DRAM device in self-refresh.
In LPSR mode, three additional power rails will remain on: VDD_LPSR_IN, NVCC_GPIO1, and
NVCC_GPIO2. These three power rails are used to supply the logic and IO pads in the LPSR domain. The
purpose of this mode is to retain the state of 16 GPIO pads, so the other components in the whole system
will have their control signal in correct state.
Among all the 16 GPIO pads, the NVCC_GPIO1 supply the power for 8 GPIO pads, and the
NVCC_GPIO2 supply the power for the other 8 GPIO pads. This allows the SoC to have some of its GPIO
working at 1.8 V while others working at 3.3 V in the LPSR mode.
NVCC_DRAM_CKE OFF OFF / ON OFF / ON ON ON
NVCC_XXX OFF OFF OFF ON / OFF ON / OFF
VDD_USB_OTG1_3P3_IN
VDD_USB_OTG2_3P3_IN
OFF / ON OFF / ON OFF / ON ON / OFF ON / OFF
Table 14. Power modes(continued)
Power rail OFF SVNS LPSR RUN Low Power
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 31
When LPSR mode is not needed for the application, the VDD_LPSR can be connected to VDDA_1P8 and
NVCC_GPIO1/2 can be connected to the same power supply as NVCC_XXX for other GPIO banks.
In LPSR mode, the supported wakeup source are RTC alarm, ONOFF event, security/tamper and also the
16 GPIO pads.
4.1.6.4 RUN Mode
In RUN mode, the CPU is active and running, and the analog / digital peripheral modules inside the
processor will be enabled. In this mode, all the external power rails to the processor have to be ON and the
SoC will be able to draw as many current as listed in the Table 5 Maximum Power Requirement.
In this mode, the PMIC should allow SoC to change the voltage of power rails through I2C/SPI interface.
Typically, when the CPU is doing DVFS, it switches the VDD_ARM voltage according to Table 9 when
the CPU’s frequency is switching between 1 GHz and 800 MHz (or below).
4.1.6.5 Low Power Mode
When the CPU is not running, the processor can enter low power mode. i.MX 7Dual processor supports a
very flexible set of power mode configurations in low power mode.
Typically there are 3 low power modes used, System IDLE, Low Power IDLE and SUSPEND:
System IDLE—This is a mode that the CPU can automatically enter when there is no thread
running. All the peripherals can keep working and the CPU’s state is retained so the interrupt
response can be very short. The cores are able to individually enter the WAIT state.
Low Power IDLE—This mode is for the case when the system needs to have lower power but still
keep some of the peripherals alive. Most of the peripherals, analog modules, and PHYs are shut
off; see Table 5-5, “Low Power Mode Definition,” in the i.MX 7Dual Application Processor
Reference Manual (IMX7DRM) for details. The interrupt response in this mode is expected to be
longer than the System IDLE, but its power is much lower.
Suspend—This mode has the greatest power savings; all clocks, unused analog/PHYs, and
peripherals are off. The external DRAM stays in Self-Refresh mode. The exit time from this mode
is much longer.
In System IDLE and Low Power IDLE mode, the voltage on external power supplies remains the same as
in RUN mode, so the external PMIC is not aware of the state of the processor. If any low-power setting
needs to be applied to PMIC, it is done through the I2C/SPI interface before the processor enters a
low-power mode.
When the processor enters SUSPEND mode, it will assert the PMIC_STBY_REQ signal to PMIC. When
this signal is asserted, the processor allows the PMIC to shut off VDD_ARM externally. However, in some
application scenario, SW want to keep the data in L2 Cache to avoid performance impact on cache miss.
In this case, the VDD_ARM cannot be shut off. To support both scenarios, the PMIC should have an option
to shut off or keep VDD_ARM when it receives the PMIC_STBY_REQ. This should be configured
through I2C/SPI interface before the processor enters SUSPEND mode.
Except the VDD_ARM, the other power rails have to keep active in SUSPEND mode. Since the current
on each power rail is greatly reduced in this mode, PMIC can enter its own low power mode to get extra
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors32
power saving. For example, the PMIC can change the DCDC rails to PFM mode to reduce the power
consumption.
The power consumption in low power modes is defined in Table 15.
All the power numbers defined in Table 15 are based on typical silicon at 25°C.
4.1.7 USB PHY Suspend current consumption
4.1.7.1 Low Power Suspend Mode
The VBUS Valid comparators and their associated bandgap circuits are enabled by default. Table 16
shows the USB interface current consumption in Suspend mode with default settings.
Table 15. Low Power Measurements
Power rail
System IDLE Low Power IDLE SUSPEND LPSR
Voltage Current Power Voltage Current Power Voltage Current Power Voltage Current Power
(V) (mA) (mW) (V) (mA) (mW) (V) (mA) (mW) (V) (mA) (mW)
VDD_ARM 1.0 2.7 2.70 1.0 0.428 0.43 1.0 0.3 0.30 0.0 0.00
VDD_SOC 1.0 19.38 19.38 1.0 1.423 1.42 1.0 0.6 0.60 0.0 0.00
VDDA_1P8_IN 1.8 3.46 6.23 1.8 0.206 0.37 1.8 0.4 0.72 0.0 0.00
VDD_SNVS_IN 3.0 0.006 0.018 3.0 0.005 0.015 3.0 0.006 0.018 3.0 0.003 0.009
VDD_LPSR_IN 1.8 0.04 0.07 1.8 0.041 0.07 1.8 0.039 0.0702 1.8 0.04 0.07
NVCC_GPIO1/2 1.8 0.072 0.13 1.8 0.073 0.13 1.8 0.072 0.13 1.8 0.072 0.13
Total — — 28.53 — — 2.45 — — 1.84 — — 0.21
Table 16. USB PHY current consumption with default settings
1
1
Low Power Suspend is enabled by setting USBx_PORTSC1 [PHCD]=1 [Clock Disable (PLPSCD)].
VDD_USB_OTG1_3P3_IN VDD_USB_OTG2_3P3_IN
Current 790 uA 790 uA
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 33
4.1.7.2 4.1.7.2 Power-Down modes
Table 17 shows the USB interface current consumption with only the OTG block powered down.
In Power-Down mode, everything is powered down, including the USB_VBUS valid comparators and
their associated bandgap circuity in typical condition. Table 18 shows the USB interface current
consumption in Power-Down mode.
4.1.8 PCIe phy 2.1 DC electrical characteristics
Note: V
DD
should have no more than 40 mVpp AC power supply noise superimposed on the high power supply voltage for the
PHY core (1.8 V nominal DC value). At the same time, VDD should have no more than 20 mVpp AC power supply noise
superimposed on the low power supply voltage for the PHY core.
The power supply voltage variation for the PHY core should have less than +/-5% including the board-level power supply variation
and on-chip power supply variation due to the finite impedances in the package.
Table 17. USB PHY current consumption with
VBUS Valid Comparators disabled
1
1
VBUS Valid comparators can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1. This
signal powers down only the VBUS Valid comparator, and does not control power to the Session Valid Comparator, ADP Probe
and Sense comparators, or the ID detection circuitry.
VDD_USB_OTG1_3P3_IN VDD_USB_OTG2_3P3_IN
Current 730 uA 730 uA
Table 18. USB PHY current consumption in Power-Down mode
1
1
The VBUS Valid Comparators and their associated bandgap circuits can be disabled through software by setting
USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1 and USBNC_OTG*_PHY_CFG2[DRVVBUS0] to 0, respectively.
VDD_USB_OTG1_3P3_IN VDD_USB_OTG2_3P3_IN
Current 200 uA 200 uA
Table 19. PCIe recommended operating conditions
Parameter Description Min Max Unit
V
DD
Low Power Supply Voltage for PHY Core 1 V 0.95 1.05 V
High Power Supply Voltage for PHY Core 1.8 V 1.71 1.89
T
A
Commercial Temperature Range 0 70 °C
T
J
Simulation Junction Temperature Range -40 125 °C
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors34
Table 20. PCIe DC electrical characteristics
Parameter Description Min Typ Max Unit
V
DD
Power Supply Voltage
(VDD of 1.0 V nominal
gate oxide /1.8 V for thick gate oxide)
1.0 - 5% 1.0 1.0 + 5% V
1.8 - 5% 1.8 1.8 + 5% V
PD Power Consumption Normal 130 mW
Partial Mode 108 mW
Slumber Mode 7 mW
Full Powerdown 0.2 mW
Table 21. PCIe PHY high-speed characteristics
High Speed I/O Characteristics
Description Symbol Speed Min. Typ. Max. Unit
Unit Interval UI 1.5 Gbps 666.67 ps
2.5 Gbps — 400
3.0 Gbps — 333.33
5.0 Gbps — 200
6.0 Gbps — 166.67
TX Serial output rise time (20% to 80%) T
TXRISE
1.5 Gbps 50 273 ps
2.5 Gbps 50
3.0 Gbps 50 136
5.0 Gbps 30
6.0 Gbps 33 80
TX Serial output fall time (80% to 20%) T
TXFALL
1.5 Gbps 50 273 ps
2.5 Gbps 50
3.0 Gbps 50 136
5.0 Gbps 30
6.0 Gbps 33 80
TX Serial data output voltage (Differential, pk–pk) ΔV
TX
1.5 Gbps 400 600 mVp–p
2.5 Gbps 400 1200
3.0 Gbps 400 700
5.0 Gbps 400 1200
6.0 Gbps 240 900
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 35
PCIe Tx deterministic jitter < 1.5 MHz TRJ 2.5 Gbps/
5.0 Gbps
— — 3 ps ps, rms
PCIe Tx deterministic jitter > 1.5 MHz TDJ 5.0 Gbps/
2.5 Gbps
— — 30 ps/
60 ps
ps, pk–pk
RX Serial data input voltage (Differential pk–pk) ΔV
RX
1.5 Gbps 325 600 mVp–p
2.5 Gbps 120 1200
3.0 Gbps 275 750
5.0 Gbps 120 1200
6.0 Gbps 240 1000
Table 22. PCIe PHY reference clock timing requirements
Description Symbol Min. Typ. Max. Unit
Frequency Tolerance F
TOL
-100 — 100 ppm
Duty Cycle D
C
40 — 60 %
Rise and Fall Time T
R
,T
F
— — 1.5 ns
Peak to peak Jitter Jitter 40 ps,pk–pk
RMS Jitter 2.5 ps,rms
Period Jitter 25 ps
External Clock source output impedence Z
C
,
DC
40 — 60 Ω
Differential input high voltage V
IH
150 — — mV
Differential input low voltage V
IL
—— -150mV
Absolute maximum input voltage V
MAX
—— 1.15V
Absolute minimum input voltage V
MIN
-0.3 — — V
Absolute crossing point voltage V
CROSS
250 — 550 mV
Table 21. PCIe PHY high-speed characteristics(continued)
High Speed I/O Characteristics
Description Symbol Speed Min. Typ. Max. Unit
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors36
Table 23. PCIe PHY reference clock Transmit requirements
Description Symbol Interface Speed Min Typ Max Unit
Frequency of TBC F
TBC
20-bit 1.5 Gbps — 75 MHz
3.0 Gbps — 150
6.0 Gbps — 300
40-bit 1.5 Gbps37.5
3.0 Gbps — 75
6.0 Gbps — 150
8-bit 2.5 Gbps 250
16-bit 5.0 Gbps
Duty cycle of TBC DCTBC 40 60 %
TXD[0:30] setup time to the rising edge of TBC T
SETUP.TX
20-bit 1.5 Gbps 2.0 ns
3.0 Gbps
6.0 Gbps 1.0
40-bit 1.5 Gbps 2.0
3.0 Gbps
6.0 Gbps
8-bit 2.5 Gbps 1.0
16-bit 5.0 Gbps
TXD[0:30] hold time to the rising edge of TBC T
HOLD.TX
20-bit 1.5 Gbps 2.0 ns
3.0 Gbps
6.0 Gbps 1.0
40-bit 1.5 Gbps 2.0
3.0 Gbps
6.0 Gbps
8-bit 2.5 Gbps 1.0
16-bit 5.0 Gbps
Latency from the rising edge of TBC to the leading edge
of the corresponding first transmitted serial output bit
TXP/TXN
T
LAT.TX
1.5 Gbps — 70 bits
2.5 Gbps — 100
3.0 Gbps — 95
5.0 Gbps — 200
6.0 Gbps — 120
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 37
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation
from these sequences may result in the following situations:
Excessive current during power-up phase
Prevention of the device from booting
Table 24. PCIe PHY reference clock Receive requirements
Description Symbol Interface Speed Min Typ Max Unit
Frequency of RBC F
RBC
20-bit 1.5 Gbps — 75 — MHz
3.0 Gbps — 150
6.0 Gbps — 300
40-bit 1.5 Gbps37.5
3.0 Gbps — 75
6.0 Gbps — 150
Duty cycle of TBC DC
RBC
——4060%
RXD[0:30] delay time from the falling edge of RBC T
DLY,RX
— 1.33 ns
Latency from the leading edge of the corresponding first
received serial input bit, RXP/RXN, to the rising edge of RBC
T
LAT.RX
20-bit 1.5 Gbps100 bits
2.5 Gbps — 230
3.0 Gbps — 100
5.0 Gbps — 260
6.0 Gbps — 100
Table 25. PCIe PHY output clock characteristics
Description Symbol Interface Speed Min Typ Max Unit
Frequency of PC_CLK F
PC_CLK
HIGH_SPEED=1 MHz
PCIe — — 250
Duty Cycle of PC_CLK D
CPC_CLK
— — 40 60 %
Frequency of TX_CLK F
TX_CLK
20-bit 1.5 Gbps — 75 MHz
3.0 Gbps — 150
6.0 Gbps — 300
40-bit 1.5 Gbps — 37.5
3.0 Gbps — 75
6.0 Gbps — 150
Duty cycle of TX_CLK D
CTX_CLK
——4060%
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors38
Irreversible damage to the processor (worst-case scenario)
4.1.9 Power-up sequence
The i.MX7 processor has the following power-up sequence requirements:
VDD_SNVS_IN to be turned on before any other power supply. If a coin cell is used to power
VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on.
VDD_SOC to be turned on before NVCC_DRAM and NVCC_DRAM_CKE.
VDD_ARM, VDD_SOC, VDDA_1P8_IN, VDD_LPSR_IN and all I/O power (NVCC_*) should
be turned on after VDD_SVNS_IN is active. But there is no sequence requirement among these
power rails other than the sequence requirement between VDD_SOC and
NVCC_DRAM/NVCC_DRAM_CKE.
There are no special timing requirements for VDD_USB_OTG1_3P3_IN and
VDD_USB_OTG2_3P3_IN.
The POR_B input (if used) must be immediately asserted at power-up and remain asserted until the last
power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the
internal POR module takes control.
The power-up sequence is shown in Figure 4 with the following timing parameters:
T1 Time from SVNS power stable to other power rails start to ramp, minimal delay is 2ms,
no max delay requirement.
T2 Time from first power rails (except SNVS) ramp up to all the power rails get stable,
minimal delay is 0ms, no max delay requirement.
T3 Time from all power rails get stable to power-on reset, minimal delay is 0ms, no max
delay requirement.
T6 Time from VDD_SOC get stable to NVCC_DRAM/NVCC_DRAM_CKE start to
ramp, minimal delay is 0ms, no max delay requirement.
VDDjNVsJN /I I I I I I I I I I I I VDD_LPSR_IN ' ' I I I I chc_GPIoI I I 5 7| I I I NVCC_GP|02 VDD_ARM VDD_SOC VDDA_I Pa_m I I I chc_><>
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 39
Figure 4. i.MX 7Dual power-up sequence
4.1.10 Power-down sequence
The i.MX7 processors have the following power-down sequence requirements:
VDD_SNVS _IN to be turned off last after any other power supply.
NVCC_DRAM/NVCC_DRAM_CKE to be turned off before VDD_SOC.
There are no special timing requirements forVDD_USB_OTG1_3P3_IN
andVDD_USB_OTG2_3P3_IN.
The power-down sequence is shown in Figure 5 with the following timing parameters:
T4 Time from first power rails (except SNVS) to ramp down to all the power rails (except
SNVS) get to ground, minimal delay is 0ms, no max delay requirement.
T5 Time from all the power rails power down (except SNVS) to SVNS power down,
minimal delay is 0ms, no max delay requirement.
T7 Time from NVCC_DRAM/NVCC_DRAM_CKE power down to VDD_SOC power
down, minimal delay is 0ms, no max delay requirement.
I I I I I I I I I I VDD_SNVS_IN I I I I I I I I I I VDDiLPSRJN I m | I | NVCC_GPI01 | z E I | | chciGFIOZ I ' ' I I VDD_ARM l< ‘2="" i="" i="" i="" vdd_soc="" i="" ‘="" i="" '="" '="" i="" i="" vddajpsjn="" r="" e="" i="" i="" i="" chc_="">
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors40
Figure 5. i.MX 7Dual power-down sequence
4.1.11 Power supplies usage
I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This
can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power
supply of each pin, see “Power Rail” columns in pin list tables of Section 6, “Package information and
contact assignments.”
4.2 Integrated LDO voltage regulator parameters
Various internal supplies can be powered from internal LDO voltage regulators. All the supply pins named
*_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only
and should not be used to power any external circuitry. See the i.MX 7Dual Application Processor
Reference Manual (IMX7DRM) for details on the power tree scheme.
NOTE
The *_CAP signals must not be powered externally. The *_CAP pins are for
the bypass capacitor connection only.
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 41
4.2.1 Internal regulators
4.2.1.1 LDO_1P2
The LDO_1P2 regulator implements a programmable linear-regulator function from VDDA_1P8_IN (see
Table 9 for minimum and maximum input requirements). The typical output of the LDO, VDD_1P2_CAP,
is 1.2 V. It is intended for use with the USB HSIC PHY, which uses this voltage level for its output driver.
For additional information, see the “Power Management Unit (PMU)” chapter of the i.MX 7Dual
Application Processor Reference Manual (IMX7DRM).
4.2.1.2 LDO_1P0D
The LDO_1P0D regulator implements a programmable linear-regulator function from VDDA_1P8_IN
(see Table 9 for minimum and maximum input requirements). The typical output of the LDO,
VDD_1P0D_CAP, is 1.0 V. It is intended for use with the internal physical interfaces, including MIPI and
PCIe PHY. For additional information, see the i.MX 7Dual Application Processor Reference Manual
(IMX7DRM).
4.2.1.3 LDO_1P0A
The LDO_1P0A regulator implements a programmable linear-regulator function from VDDA_1P8_IN
(see Table 9 for minimum and maximum input requirements). The typical output of the LDO,
VDD_1P0A_CAP, is 1.0 V. It is intended for use with the internal analog modules, including the XTAL,
ADC, PLL, and Temperature Sensor. For additional information, see the i.MX 7Dual Application
Processor Reference Manual (IMX7DRM).
4.2.1.4 LDO_USB1_1PO/LDO_USB2_1P0
The LDO_USB1_1P0/LDO_USB2_1P0 regulators implement a fixed linear-regulator function from
VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN power inputs respectively (see Table 9 for
minimum and maximum input requirements). The typical output voltage is 1.0 V. It is intended for use
with the internal USB physical interfaces (USB PHY1 and USB PHY2). For additional information, see
the i.MX 7Dual Application Processor Reference Manual (IMX7DRM).
Table 26. LDO parameters
Parameter Min Max Units
PVCC_GPIO_AT3P3_1P8 1.6 1.98 V
VDD_1P2 1.1 1.32 V
LPSR_1P0 0.95 1.155 V
VDDA_PHY_1P8 1.6 1.98 V
USB_OTG1_1P0 0.95 1.155 V
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors42
4.2.1.5 LDO_SVNS_1P8
1.8 V LDO from coin cell to generate 1.8 V power for SNVS and 32 K RTC. The LDO_SNVS_1P8
regulator implements a fixed linear-regulator function from VDD_SNVS_IN (see Table 9 for minimum
and maximum input requirements). The typical output is 1.7 V. It is intended for use with the internal
SNVS circuitry and 32 K RTC. For additional information, see the i.MX 7Dual Application Processor
Reference Manual (IMX7DRM).
4.3 PLL electrical characteristics
4.4 On-chip oscillators
4.4.1 OSC24M
Power for the oscillator is supplied from a clean source of VDDA_1P8. This block implements an
amplifier that when combined with a suitable quartz crystal and external load capacitors implements an
oscillator. The oscillator is powered from VDDA_1P8.
Table 27. PLL Electrical Parameters
PLL type Parameter Value
AUDIO_PLL Clock output range 650 MHz–1.3 GHz
Reference clock 24 MHz
Lock time <11250 reference cycles
VIDEO_PLL Clock output range 650 MHz–1.3 GHz
Reference clock 24 MHz
Lock time <383 reference cycles
SYS_PLL Clock output range 480 MHz
Reference clock 24 MHz
Lock time <383 reference cycles
ENET_PLL Clock output range 650 MHz–1.3 GHz, set to 1.0 GHz
Reference clock 24 MHz
Lock time <11250 reference cycles
ARM_PLL Clock output range 800 MHz–1.2 GHz
Reference clock 24 MHz
Lock time <2250 reference cycles
DRAM_PLL Clock output range 800 MHz–1066 MHz
Reference clock 24 MHz
Lock time >2250 reference cycles
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 43
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight
forward biased-inverter implementation is used.
4.4.2 OSC32K
This block implements an internal amplifier, trimable load capacitors and a resistor that when combined
with a suitable quartz crystal implements a low power oscillator.
In addition, if the clock monitor determines that the OSC32K is not present then the source of the 32 kHz
clock will automatically switch to the internal relaxation oscillator of lesser frequency accuracy.
CAUTION
The internal RTC oscillator does not provide an accurate frequency and is
affected by process, voltage and temperature variations. NXP strongly
recommends using an external crystal as the RTC_XTALI reference. If the
internal oscillator is used instead, careful consideration must be given to the
timing implications on all of the SoC modules dependent on this clock.
The OSC32k runs from VDD_SNVS_1p8_CAP, which is regulated from
VDD_SNVS. The target battery is an ~3 V coin cell for VDD_SNVS and
the regulated output is ~1.75V.
4.5 I/O DC parameters
This section includes the DC parameters of the following I/O types:
Table 28. OSC32K Main Characteristics
Min Typ Max Comments
Fosc 32.768 KHz This frequency is nominal and determined by the crystal selected. 32.0 K
would work as well.
Current consumption 350 nA The typical value shown is only for the oscillator, driven by an external
crystal. If the interrelaxation oscillator is used instead of an external crystal
then approximately 250 nA should be added to this value.
Bias resistor 200 MΩThis is the integrated bias resistor that sets the amplifier into a high gain
state. Any leakage through the ESD network, external board leakage, or
even a scope probe that is significant relative to this value will debias the
amp. The debiasing will result in low gain and will impact the circuit's ability
to start up and maintain oscillations.
Target Crystal Properties
Cload 10 pF Usually, crystals can be purchased tuned for different Cload. This Cload
value is typically 1/2 of the capacitances realized on the PCB on either side
of the quartz. A higher Cload will decrease oscillation margin but increases
current oscillating through the crystal. The Cload is programmable in 2 pF
steps.
ESR — 50 KΩ Equivalent series resistance of the crystal. Choosing a crystal with a higher
value will decrease oscillating margin.
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors44
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR3 and DDR3 modes
Differential I/O (CCM_CLK1)
4.5.1 General purpose I/O (GPIO) DC parameters
Table 29 shows DC parameters for GPIO pads. The parameters in Table 29 are guaranteed per the
operating ranges in Table 9, unless otherwise noted.
4.5.2 DDR I/O DC electrical characteristics
The DDR I/O pads support DDR3/DDR3L, LPDDR2, and LPDDR3 operational modes. The DDR
Memory Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs. The
DDRC supports the following memory types:
DDR3 SDRAM compliant to JESD79-3E DDR3 JEDEC standard release July, 2010
LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009
LPDDR3 SDRAM compliant to JESD209-3B LPDDR3 JEDEC standard release August, 2013
Table 29. GPIO DC Parameters
Parameter Symbol Test Conditions Min Max Units
High-level output voltage V
OH
I
OH
= –1.8mA, –3.6mA, –7.2mA, –10.8mA 0.8 × OVDD OVDD V
Low-level output voltage V
OL
I
OL
=1.8mA, 3.6mA, 7.2mA, 10.8mA 0 0.2 × OVDD V
High-level input voltage V
IH
—0.7 × OVDD OVDD + 0.3 V
Low-level input voltage V
IL
—–0.30.3 × OVDD V
Input hysteresis V
HYS
—0.15V
Pull-up resistor (5_kΩ PU) V
DD
= 1.8 ± 0.15 V 5.94 5.98 KΩ
Pull-up resistor (5_kΩ PU) V
DD
= 3.3 ± 0.3 V 4.8 5.3 KΩ
Pull-up resistor (47_kΩ PU) V
DD
= 1.8 ± 0.15 V 46.1 50.6 KΩ
Pull-up resistor (47_kΩ PU) V
DD
=3.3±0.3V 45.8 49.8 KΩ
Pull-up resistor (100_kΩ PU) V
DD
= 1.8 ± 0.15 V 97.5 105.9 KΩ
Pull-up resistor (100_kΩ PU) V
DD
= 3.3 ± 0.3 V 101 105 KΩ
Pull-down resistor (100_kΩ PU) V
DD
= 1.8 ± 0.15 V 101 108.6 KΩ
Pull-down resistor (100_kΩ PD) V
DD
= 3.3 ± 0.3 V 101 108 KΩ
Input current (no PU/PD) I
OZ
—–55μΑ
Sink/source current in Push-Pull
mode
Driving currents (@100MHz,
V
OL
/H = 0.5×OV
DD
, SS, 125°C)
OV
DD
= 2.7 V
–32.9 32.9 mA
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 45
DDRMC operation with the standards stated above is contingent upon the board DDR design adherence
to the DDR design and layout requirements stated in the hardware development guide for the i.MX 7
application processor.
4.5.2.1 LPDDR3 mode I/O DC parameters
Table 30. DC input logic level
Characteristics Symbol Min Max Unit
DC input logic high
1
1
It is the relationship of the V
DDQ
of the driving device and the V
REF
of the receiving device that determines noise margins.
However, in the case of V
IH
(DC) max (that is, input overdrive), it is the V
DDQ
of the receiving device that is referenced.
V
IH(DC)
V
REF
+100 mV
DC input logic low
1
V
IL(DC)
—V
REF
–100
Table 31. Output DC current drive
Characteristics Symbol Min Max Unit
Output minimum source DC current
1
1
When DDS=[111] and without ZQ calibration.
I
OH
(DC) –4 — mA
Output minimum sink DC current
1
I
OL
(DC) 4 — mA
DC output high voltage(I
OH
= –0.1mA)
1,2
2
The values of V
OH
and V
OL
are valid only for 1.2 V range.
V
OH
0.9 × V
DDQ
—V
DC output low voltage(I
OL
= 0.1mA)
1,2
V
OL
—0.1 × V
DDQ
V
Table 32. Input DC current
Characteristics Symbol Min Max Unit
High level input current
1,2
1
The values of V
OH
and V
OL
are valid only for 1.2 V range.
2
Driver Hi-Z and input power-down (PD=High)
I
IH
–25 25 μA
Low level input current
1,2
I
IL
–25 25 μA
Table 33. LPDDR3 I/O DC electrical parameters
Parameters Symbol Test
Conditions Min Max Unit
High-level output voltage VOH Ioh= -0.1mA 0.9 ×OVDD — V
Low-level output voltage VOL Iol= 0.1mA 0.1 ×OVDD V
Input Reference Voltage Vref 0.49 ×OVDD 0.51 ×OVDD V
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors46
4.5.3 Differential I/O port (CCM_CLK1P/N)
The clock I/O interface is designed to be compatible with TIA/EIA 644-A standard. See TIA/EIA
STANDARD 644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface
Circuits (2001), for details.
Table 34 shows the clock I/O DC parameters.
DC High-Level input voltage Vih_DC VRef + 0.100 OVDD V
DC Low-Level input voltage Vil_DC OVSS VRef – 0.100 V
Differential Input Logic High Vih_diff 0.26 See note
1
Differential Input Logic Low Vil_diff See note
1
-0.26 —
Pull-up/Pull-down Impedance Mismatch Mmpupd –15 15 %
240 ?unit calibration resolution Rres 10 ?
Keeper Circuit Resistance Rkeep 110 175 k?
Input current (no pull-up/down) Iin VI = 0, VI = OVDD -2.5 2.5 μA
1
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot.
Table 34. Differential clock I/O DC electrical characteristics
Symbol Parameter Test conditions Min Typ Max Unit Notes
Vod Output Differential Voltage Rload=100 Ω between padp
and padn
250 350 450 mV Vpadp–Vpadn
Voh High-level output voltage 1.025 1.175 1.325 V
1
Vol Low-level output voltage 0.675 0.825 0.975
2
Vocm Output common mode voltage 0.9 1 1.1 Core supply is used
Vid Input Differential Voltage 100 600 mV Vpadp–Vpadn
Vicm Input common mode voltage 50m 1.57 V Vicm(max)=ovdd(m
in)–Vid(min)/2
Icc-ovdd Tri-state I/O supply current ipp_ibe=ipp_obe=0 irefin
disabled (0uA)
0.46 uA
Table 33. LPDDR3 I/O DC electrical parameters(continued)
Parameters Symbol Test
Conditions Min Max Unit
«+1
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 47
4.6 I/O AC parameters
This section includes the AC parameters of the following I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2, LPDDR3 and DDR3/DDR3L modes
Differential I/O (CCM_CLK1)
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 6 and
Figure 7.
Figure 6. Load circuit for output
Figure 7. Output transition time waveform
4.6.1 General purpose I/O AC parameters
This section presents the I/O AC parameters for GPIO in different modes. Note that the fast or slow I/O
behavior is determined by the appropriate control bits in the IOMUXC control registers.
Icc-ovdd-lp Tri-state I/O supply current in
low-power mode
ipp_pwr_stable_b_1p8 =1
(means 1.8 V)
vddi is OFF
irefin disabled (0 uA)
0.35 1 uA
Icc-vddi Tri-state core supply current ipp_ibe=ipp_obe=0
irefin disabled (0 uA)
0.8
Icc Power supply current (ovdd) Rload=100 Ω between padp
and padn
4.7 mA This is not including
current through
external
Rload=100 Ω
1
VOH_max = Vos_max + Vod_max/2 = 1.1+0.225 = 1.325 V. VOH_min = Vos_min + Vod_min/2 = 0.9+0.125 = 1.025 V.
2
VOL_max = Vos_max - Vod_min/2 = 1.1-0.125 = 0.975 V. VOL_min = Vos_min - Vod_max/2 = 0.9 - 0.225 = 0.675 V
Table 34. Differential clock I/O DC electrical characteristics(continued)
Symbol Parameter Test conditions Min Typ Max Unit Notes
Test Point
From Output
Under Test CL
CL includes package, probe and fixture capacitance
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors48
Table 35. Maximum input cell delay time
Cell name
Max Delay PAD Y (ns)
VDD=1.65 V
T=125°C
Process=Slow
VDD=2.3 V
T=125°C
Process=Slow
VDD=3.0 V
T=125°C
Process=Slow
PBIDIRPUD_E33_33_NT_DR 0.9 1.5 1.4
Table 36. Output cell delay time for fixed load
Parameter
Simulated Cell Delay A PAD (ns)
VDD = 1.65 V, T = 125°C VDD = 2.3 V, T = 125°C VDD = 3.0 V, T = 125°C
DS0 DS1 SR Driver Type CL=
5 pF
CL=
10 pF
CL=
40 pF
CL=
5 pF
CL=
10 pF
CL=
40 pF
CL=
5 pF
CL=
10 pF
CL=
40 pF
0011× Slow Slew 4.9 6.0 12.5 4.8 6.1 11.9 5.4 6.7 14.6
0001× Fast Slew 3.8 4.7 11.2 3.8 5.1 12.8 4.2 5.3 13.5
0112× Slow Slew 4.1 4.8 8.2 4.2 4.9 8.8 4.5 5.3 9.1
0102× Fast Slew 2.8 3.3 6.4 2.9 3.4 7.2 3.1 3.7 7.2
1014× Slow Slew 3.6 4.1 6.0 3.7 4.1 6.4 3.9 4.4 6.6
1004× Fast Slew 2.2 2.5 4.1 2.3 2.6 4.6 2.4 2.8 4.8
1116× Slow Slew 3.6 4.0 5.5 3.6 4.0 5.9 3.8 4.3 6.2
1106× Fast Slew 2.0 2.3 3.4 2.1 2.3 3.8 2.2 2.5 3.9
Table 37. Maximum frequency of operation for input
Maximum frequency (MHz)
VDD = 1.8 V, CL = 50 fF VDD=2.5 V, CL =5 0 fF VDD = 3.3 V, CL = 50 fF
550 400 430
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 49
4.6.2 Clock I/O AC parameters—CCM_CLK1_N/CCM_CLK1_P
The differential output transition time waveform is shown in Figure 8.
Table 38. Maximum frequency of operation for output
1
1
Maximum frequency value is obtained with lumped capacitor load. If you consider transmission line or SSN noise
effect, it could be worse than suggested value.
Parameter
Maximum frequency (MHz)
VDD = 1.8 V VDD = 2.5 V VDD = 3.3 V
DS0 DS1 SR Driver Type CL=
5 pF
CL=
10 pF
CL=
40 pF
CL=
5 pF
CL=
10 pF
CL=
40 pF
CL=
5 pF
CL=
10 pF
CL=
40 pF
0011× Slow Slew 1007025906020956020
0001× Fast Slew 110 75 25 100 65 20 100 65 20
0112× Slow Slew 120 100 50 120 100 40 115 95 40
0102× Fast Slew 185 145 50 180 130 40 170 130 40
1014× Slow Slew 140 125 85 135 120 70 130 115 70
1004× Fast Slew 235 200 100 225 195 80 215 185 80
1116× Slow Slew 140 125 90 135 120 85 130 115 80
1106× Fast Slew 250 225 140 240 215 120 235 205 120
ov (amerential)
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors50
Figure 8. Differential LVDS driver transition time waveform
Table 39 shows the AC parameters for clock I/O.
Table 39. I/O AC Parameters of LVDS Pad
Symbol Parameter Test conditions Min Typ Max Unit Notes
Tphld Output Differential propagation delay high to low Rload=100 Ω between padp and
padn,
Cload = 2pF
— 0.61 ns
1
1
At WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 50-50%. Output differential signal measured.
Tplhd Output Differential propagation delay low to high 0.61
Ttlh Output Transition time low to high 0.17
2
2
WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 20-80%. Output differential signal measured
Tthl Output Transition time high to low 0.17
Tphlr Input Differential propagation delay high to low Rload=100 Ω between padp and
padn, Cload on ipp_ind=0.1 pF
— 0.33 ns
3
3
At WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 50-50%.
Tplhr Input Differential propagation delay low to high 0.33
Ttx Transmitter startup time (ipp-obe low to high) 40 ns
4
4
TX startup time is defined as the time taken by transmitter for settling after its ipp_obe has been asserted. It is to stabilize the
current reference. Functionality is guaranteed only after the startup time
F Operating frequency 500 1000 MHz
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 51
4.7 Output buffer impedance parameters
This section defines the I/O impedance parameters of the i.MX 7Dual family of processors for the
following I/O types:
Double Data Rate I/O (DDR) for LPDDR2, LPDDR3, and DDR3/DDR3L modes
Differential I/O (CCM_CLK1)
USB battery charger detection open-drain output (USB_OTG1_CHD_B)
NOTE
DDR I/O output driver impedance is measured with “long” transmission
line of impedance Ztl attached to I/O pad and incident wave launched into
transmission line. Rpu/Rpd and Ztl form a voltage divider that defines
specific voltage of incident wave relative to OVDD. Output driver
impedance is calculated from this voltage divider (see Figure 9).
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors52
Figure 9. Impedance matching load for measurement
4.7.1 DDR I/O output buffer impedance
The LPDDR2 interface is designed to be fully compatible with JESD209-2B LPDDR2 JEDEC standard
release June, 2009. The LPDDR3 interface mode is designed to be compatible with JESD209-3B JEDEC
standard released August, 2013. The DDR3 interface is designed to be fully compatible with JESD79-3F
DDR3 JEDEC standard release July, 2012.
ipp_do
Cload = 1p
Ztl Ω, L = 20 inches
predriver
PMOS (Rpu)
NMOS (Rpd)
pad
OVDD
OVSS
t,(ns)
0
U,(V)
OVDD
t,(ns)
0
VDD Vin (do)
Vout ( pad )
U,(V)
Vref
Rpu = Vovdd - Vref1
Vref1 × Ztl
Rpd = × Ztl
Vref2
Vovdd - Vref2
Vref1 Vref2
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 53
Table 40 shows DDR I/O output buffer impedance of i.MX 7Dual family of processors.
Note:
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.
2. Calibration is done against 240 Ω external reference resistor.
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.
4.7.2 Differential I/O output buffer impedance
The Differential CCM interface is designed to be compatible with TIA/EIA 644-A standard. See, TIA/EIA
STANDARD 644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface
Circuits (2001) for details.
4.7.3 USB battery charger detection driver impedance
The USB_OTG1_CHD_B open-drain output pin can be used to signal the results of USB Battery Charger
detection routines for the USB_OTG1 PHY instance to power management and monitoring devices. Use
of this pin requires an external pullup resistor, for more information see Table 3, and Table 7.
Table 41 shows the USB_OTG1_CHD_B pulldown driver impedance for the USB_OTG1_CHD_B pin.
4.8 System modules timing
This section contains the timing and electrical parameters for the modules in each i.MX 7Dual processor.
Table 40. DDR I/O output buffer impedance
Parameter Symbol Test Conditions DSE
(Drive Strength)
Typical
Unit
NVCC_DRAM=1.5 V
(DDR3)
DDR_SEL=11
NVCC_DRAM=1.2 V
(LPDDR2)
DDR_SEL=10
Output Driver
Impedance Rdrv
000
001
010
011
100
101
110
111
Hi-Z
240
120
80
60
48
40
34
Hi-Z
240
120
80
60
48
40
34
Ω
Table 41. USB_OTG1_CHD_B pulldown driver impedance (VDD_USB_OTG1_3P3_IN 3.3 V)
Parameter Symbol Typical Unit
Open-drain output driver pulldown impedance Rdrv_pd 1000 Ω
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors54
4.8.1 Reset timings parameters
Figure 10 shows the reset timing and Table 42 lists the timing parameters.
Figure 10. Reset timing diagram
4.8.2 WDOG Reset timing parameters
Figure 11 shows the WDOG reset timing and Table 43 lists the timing parameters.
Figure 11. WDOG
x
_B timing diagram
NOTE
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or
approximately 30 μs.
NOTE
WDOGx_B output signals (for each one of the Watchdog modules) do not
have dedicated pins, but are muxed out through the IOMUX. See the
IOMUXC chapter of the i.MX 7Dual Application Processor Reference
Manual (IMX7DRM) for detailed information.
4.8.3 External interface module (EIM)
The following subsections provide information on the EIM.
Table 42. Reset timing parameters
ID Parameter Min Max Unit
CC1 Duration of POR_B to be qualified as valid.
Note: POR_B rise/fall times must be 5 ns or less.
1—
RTC_XTALI cycle
Table 43. WDOG
x
_B timing parameters
ID Parameter Min Max Unit
CC3 Duration of WDOG1_B Assertion 1
RTC_XTALI cycle
POR_B
CC1
(Input)
WDOG
x
_B
CC3
(Output)
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors 55
4.8.3.1 EIM interface pads allocation
EIM supports 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 44
provides EIM interface pads allocation in different modes.
Table 44. EIM internal module multiplexing
1
1
For more information on configuration ports mentioned in this table, see the
i.MX 7Dual Application Processor Reference
Manual
(IMX7DRM).
Setup
Non Multiplexed Address/Data Mode Multiplexed Address/
Data Mode
8 Bit 16 Bit 16 Bit
MUM = 0,
DSZ = 100
MUM = 0,
DSZ = 101
MUM = 0,
DSZ = 001
MUM = 1,
DSZ = 001
EIM_ADDR
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_DATA
[07:00],
EIM_EB0_B
EIM_DATA
[07:00]
—EIM_DATA
[07:00]
EIM_AD
[07:00]
EIM_DATA
[15:08],
EIM_EB1_B
—EIM_DATA
[15:08]
EIM_DATA
[15:08]
EIM_AD
[15:08]
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet, Rev. 6, 02/2019
NXP Semiconductors56
4.8.3.2 General EIM Timing—Synchronous mode
Figure 12, Figure 13, and Table 45 specify the timings related to the EIM module. All EIM output control
signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge
according to corresponding assertion/negation control fields.
,
Figure 12. EIM outputs timing diagram
Figure 13. EIM inputs timing diagram
WE4
EIM_ADDRxx
EIM_CSx_B
EIM_WE_B
EIM_OE_B
EIM_BCLK
EIM_EBx_B
EIM_LBA_B
Output Data
...
WE5
WE6 WE7
WE8 WE9
WE10 WE11
WE12 WE13
WE14 WE15
WE16 WE17
WE3
WE2
WE1
Input Data
EIM_WAIT_B
EIM_BCLK
WE19
WE18
WE21
WE20
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 57
4.8.3.3 Examples of EIM synchronous accesses
Table 45. EIM bus timing parameters
1
ID Parameter
BCD = 0 BCD = 1 BCD = 2 BCD = 3
Min Max Min Max Min Max Min Max
WE1 EIM_BCLK Cycle
time
2
t 2 x t 3 x t 4 x t
WE2 EIM_BCLK Low
Level Width
0.4 x t 0.8 x t 1.2 x t 1.6 x t
WE3 EIM_BCLK High
Level Width
0.4 x t 0.8 x t 1.2 x t 1.6 x t
WE4 Clock rise to
address valid
3
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 -t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE5 Clock rise to
address invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE6 Clock rise to
EIM_CSx_B valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE7 Clock rise to
EIM_CSx_B invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE8 Clock rise to
EIM_WE_B Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE9 Clock rise to
EIM_WE_B Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE10 Clock rise to
EIM_OE_B Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE11 Clock rise to
EIM_OE_B Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE12 Clock rise to
EIM_EBx_B Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE13 Clock rise to
EIM_EBx_B Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE14 Clock rise to
EIM_LBA_B Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE15 Clock rise to
EIM_LBA_B Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE16 Clock rise to Output
Data Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE17 Clock rise to Output
Data Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE18 Input Data setup
time to Clock rise
2 — 4————
WE19 Input Data hold time
from Clock rise
2 — 2————
WE20 EIM_WAIT_B setup
time to Clock rise
2 — 4————
WE21 EIM_WAIT_B hold
time from Clock rise
2 — 2————
t # 1‘ f Hfi f T # f
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors58
Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the
timing parameters mentioned previously for specific control parameters settings.
Figure 14. Synchronous memory read access, WSC=1
1
t is the maximum EIM logic (axi_clk) cycle time. The maximum allowed axi_clk frequency depends on the fixed/non-fixed
latency configuration, whereas the maximum allowed EIM_BCLK frequency is:
—Fixed latency for both read and write is 132 MHz.
—Variable latency for read only is 132 MHz.
—Variable latency for write only is 52 MHz.
In variable latency configuration for write, if BCD = 0 & WBCDD = 1 or BCD = 1, axi_clk must be 104 MHz. Write BCD = 1 and
104 MHz axi_clk, will result in a EIM_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other buses
are impacted which are clocked from this source. See the CCM chapter of the
i.MX 7Dual Application Processor Reference
Manual
(IMX7DRM) for a detailed clock tree description.
2
EIM_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is
defined as 50% as signal value.
3
For signal measurements, “High” is defined as 80% of signal value and “Low” is defined as 20% of signal value.
Last Valid Address Address v1
D(v1)
EIM_BCLK
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE4 WE5
WE6 WE7
WE10 WE11
WE13
WE12
WE14
WE15
WE18
WE19
g {FF : LL 6 , fa , , a i u a a t a A J #3 k k e k k W Hm ,7 i : ,7\%47 # , W F a k g P k k ‘ \JL 4 a 4 a T\
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 59
Figure 15. Synchronous memory, write access, WSC=1, WBEA=0 and WADVN=0
Figure 16. Muxed Address/Data (A/D) mode, synchronous write access, WSC=6, ADVA=0, ADVN=1, and
ADH=1
NOTE
In 32-bit Muxed Address/Data (A/D) mode the 16 MSBs are driven on the
data bus.
Last Valid Address Address V1
D(V1)
EIM_BCLK
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE4 WE5
WE6 WE7
WE8 WE9
WE12
WE13
WE14
WE15
WE16 WE17
EIM_BCLK
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Address V1 Write Data
WE4
WE16
WE6
WE7
WE9
WE8
WE10
WE11
WE14 WE15
WE17
WE5
Last Valid Address
EIM_ADDRxx/
EIM_ADxx
fl ‘ m \ / mimm, , e :4
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors60
Figure 17. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0
4.8.3.4 General EIM timing—Asynchronous mode
Figure 18 through Figure 22, and Table 46 help you determine timing parameters relative to the chip
select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the
timing parameters mentioned above.
Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through
Figure 21 as RWSC, OEN and CSN is configured differently. See the i.MX 7Dual Application Processor
Reference Manual (IMX7DRM) for the EIM programming model.
Figure 18. Asynchronous memory read access (RWSC = 5)
Last
EIM_BCLK
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Address V1 Data
Valid Address
EIM_ADxx
WE5
WE6
WE7
WE14 WE15
WE10
WE11
WE12 WE13
WE18
WE19
WE4
Last Valid Address Address V1
D(V1)
EIM_ADDRxx/
EIM_DATAxx[7:0]
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
EIM_ADxx
/ mvmm x/ a k We a — ,1 W V 1» k 32, 33+i+ 4. 39+i+ o1 45+¥e 461 g. 4147*
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 61
Figure 19. Asynchronous A/D muxed read access (RWSC = 5)
Figure 20. Asynchronous memory write access
Addr. V1 D(V1)
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE39
WE35A
WE37
WE36
WE38
WE40A
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
WE32A
EIM_ADxx
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors62
Figure 21. Asynchronous A/D muxed write access
Figure 22. DTACK mode read access (DAP=0)
EIM_WE_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE33
WE45
WE34
WE46
WE42
Addr. V1 D(V1)
EIM_ADDRxx/
WE31
WE42
WE41
WE32A
EIM_DATAxx
EIM_LBA_B
WE39 WE40A
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx[7:0]
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
EIM_DTACK_B
WE47
WE48
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 63
Figure 23. DTACK Mode write access (DAP=0)
Table 46. EIM asynchronous timing parameters table relative chip to select
Ref No. Parameter
Determination by
Synchronous measured
parameters
1
Min Max Unit
WE31 EIM_CSx_B valid to Address
Valid
WE4 – WE6 – CSA
2
3 – CSA ns
WE32 Address Invalid to EIM_CSx_B
invalid
WE7 – WE5 – CSN
3
—3 CSNns
WE32A(m
uxed A/D
EIM_CSx_B valid to Address
Invalid
t
4
+ WE4 – WE7 + (ADVN
5
+
ADVA
6
+ 1 – CSA)
–3 + (ADVN +
ADVA + 1 – CSA)
—ns
WE33 EIM_CSx_B Valid to
EIM_WE_B Valid
WE8 – WE6 + (WEAWCSA) 3 + (WEA – WCSA) ns
WE34 EIM_WE_B Invalid to
EIM_CSx_B Invalid
WE7 – WE9 + (WEN – WCSN) 3 + (WEN WCSN) ns
WE35 EIM_CSx_B Valid to
EIM_OE_B Valid
WE10 – WE6 + (OEA – RCSA) 3 + (OEA RCSA) ns
WE35A
(muxed
A/D)
EIM_CSx_B Valid to
EIM_OE_B Valid
WE10 – WE6 + (OEA +
RADVN + RADVA + ADH + 1 –
RCSA)
–3 + (OEA +
RADVN+RADVA+
ADH+1–RCSA)
3 + (OEA +
RADVN+RADVA+AD
H+1–RCSA)
ns
WE36 EIM_OE_B Invalid to
EIM_CSx_B Invalid
WE7 – WE11 + (OEN – RCSN) 3 (OEN RCSN) ns
WE37 EIM_CSx_B Valid to
EIM_EBx_B Valid (Read
access)
WE12 – WE6 + (RBEA –
RCSA)
3 + (RBEA – RCSA) ns
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
EIM_DTACK_B
WE48
WE47
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors64
WE38 EIM_EBx_B Invalid to
EIM_CSx_B Invalid (Read
access)
WE7 – WE13 + (RBEN –
RCSN)
3 – (RBEN– RCSN) ns
WE39 EIM_CSx_B Valid to
EIM_LBA_B Valid
WE14 WE6 + (ADVA – CSA) 3 + (ADVA – CSA) ns
WE40 EIM_LBA_B Invalid to
EIM_CSx_B Invalid (ADVL is
asserted)
WE7 – WE15 – CSN 3 – CSN ns
WE40A
(muxed
A/D)
EIM_CSx_B Valid to
EIM_LBA_B Invalid
WE14 – WE6 + (ADVN + ADVA
+ 1 – CSA)
–3 + (ADVN +
ADVA + 1 – CSA)
3 + (ADVN + ADVA +
1 – CSA)
ns
WE41 EIM_CSx_B Valid to Output
Data Valid
WE16 – WE6 – WCSA 3 – WCSA ns
WE41A
(muxed
A/D)
EIM_CSx_B Valid to Output
Data Valid
WE16 – WE6 + (WADVN +
WADVA + ADH + 1 – WCSA)
3 + (WADVN +
WADVA + ADH + 1
WCSA)
ns
WE42 Output Data Invalid to
EIM_CSx_B Invalid
WE17 – WE7 – CSN 3 – CSN ns
MAXCO Output maximum delay from
internal driving
EIM_ADDRxx/control FFs to
chip outputs
10 — ns
MAXCSO Output maximum delay from
CSx internal driving FFs to CSx
out
10 — ns
MAXDI EIM_DATAxx maximum delay
from chip input data to its
internal FF
5—ns
WE43 Input Data Valid to EIM_CSx_B
Invalid
MAXCO – MAXCSO + MAXDI MAXCO –
MAXCSO +
MAXDI
—ns
WE44 EIM_CSx_B Invalid to Input
Data invalid
00ns
WE45 EIM_CSx_B Valid to
EIM_EBx_B Valid (Write
access)
WE12 – WE6 + (WBEA –
WCSA)
3 + (WBEA – WCSA) ns
WE46 EIM_EBx_B Invalid to
EIM_CSx_B Invalid (Write
access)
WE7 – WE13 + (WBEN –
WCSN)
–3 + (WBEN –
WCSN)
ns
Table 46. EIM asynchronous timing parameters table relative chip to select(continued)
Ref No. Parameter
Determination by
Synchronous measured
parameters
1
Min Max Unit
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 65
MAXDTI MAXIMUM delay from
EIM_DTACK_B to its internal
FF + 2 cycles for
synchronization
10 — ns
WE47 EIM_DTACK_B Active to
EIM_CSx_B Invalid
MAXCO – MAXCSO +
MAXDTI
MAXCO –
MAXCSO +
MAXDTI
—ns
WE48 EIM_CSx_B Invalid to
EIM_DTACK_B Invalid
00ns
1
For more information on configuration parameters mentioned in this table, see the
i.MX 7Dual Application Processor Reference
Manual
(IMX7DRM).
2
In this table, CSA means WCSA when write operation or RCSA when read operation.
3
In this table, CSN means WCSN when write operation or RCSN when read operation.
4
t is axi_clk cycle time.
5
In this table, ADVN means WADVN when write operation or RADVN when read operation.
6
In this table, ADVA means WADVA when write operation or RADVA when read operation.
Table 46. EIM asynchronous timing parameters table relative chip to select(continued)
Ref No. Parameter
Determination by
Synchronous measured
parameters
1
Min Max Unit
| p | | | |¢ ROW/EA COUBA 1
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors66
4.8.4 DDR SDRAM-specific parameters (DDR3, DDR3L, LPDDR3, and
LPDDR2)
4.8.4.1 DDR3/DDR3L parameters
Figure 24 shows the DDR3 basic timing diagram with the timing parameters provided in Table 47.
Figure 24. DDR3 Command and Address Timing Diagram
Table 47. DDR3 timing parameters
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
DDR1 DRAM_SDCLKx_P clock high-level width t
CH
0.47 0.53 t
CK
DDR2 DRAM_SDCLKx_P clock low-level width t
CL
0.47 0.53 t
CK
DDR4 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKE, DRAM_SDWE_B,
DRAM_SDODTx setup time
t
IS
425 — ps
DDR5 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKE, DRAM_SDWE_B,
DRAM_SDODTx hold time
t
IH
375 — ps
DDR6 Address output setup time t
IS
425 — ps
DDR7 Address output hold time t
IH
375 — ps
DRAM_SDWE_B
DRAM_ADDRxx ROW/BA COL/BA
DDR1
DDR2
DDR4
DDR4
DDR5
DDR5
DDR5
DDR5
DDR6 DDR7
DRAM_SDCLKx_P
DRAM_
ODTx /
DDR4
DRAM_SDCKEx
DRAM_SDCLKx_N
DRAM_CSx_B
DRAM_RAS_B
DRAM_CAS_B
DDR4
‘ 1> >
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 67
2
All measurements are in reference to Vref level.
3
Measurements were done using balanced load and 25
Ω
resistor from outputs to VDD_REF.
Figure 25 shows the DDR3 write timing diagram. The timing parameters for this diagram appear in
Table 48.
Figure 25. DDR3 write cycle
1
To receive the reported setup and hold values, write calibration should be performed in order to locate the
DRAM_SDQSx_P
in
the middle of DRAM_DATAxx window.
2
All measurements are in reference to Vref level.
3
Measurements were taken using balanced load and 25
Ω
resistor from outputs to DDR_VREF.
Table 48. DDR3 write cycle
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
DDR17 DRAM_DATAxx and DRAM_DQMx setup time to
DRAM_SDQSx_P
(differential strobe)
t
DS
225 — ps
DDR18 DRAM_DATAxx and DRAM_DQMx hold time to
DRAM_SDQSx_P
(differential strobe)
t
DH
250 — ps
DDR21
DRAM_SDQSx_P
latching rising transitions to associated clock edges t
DQSS
-0.25 +0.25 tCK
DDR22
DRAM_SDQSx_P
high level width t
DQSH
0.45 0.55 tCK
DDR23
DRAM_SDQSx_P
low level width t
DQSL
0.45 0.55 tCK
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDQSx_P
DRAM_DATAxx
DRAM_DQMx
Data Data Data Data Data Data Data Data
DM DM DM DM DM DM DM DM
DDR17
DDR17
DDR17
DDR17
DDR18 DDR18
DDR18 DDR18
DDR21 DDR23
DDR22
(output)
(output)
(output)
Mmm/ \I / \ } m} DRAMstB " ”’4 “ Hun.» LPS" ‘— <—lp5 dram="" sdckex="" 4.="" -=""> LP3 LPG + LP: DFIAM_CAS_B , LP“, » LP4¢
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors68
Figure 26 shows the DDR3 read timing diagram. The timing parameters for this diagram appear in
Table 49.
Figure 26. DDR3 read cycle
1
To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATAxx window.
2
All measurements are in reference to Vref level.
3
Measurements were done using balanced load and 25
Ω
resistor from outputs to VDD_REF.
4.8.4.2 LPDDR3 parameters
Figure 27 shows the LPDDR3 basic timing diagram. The timing parameters for this diagram appear in
Table 50.
Figure 27. LPDDR3 command and address timing diagram
Table 49. DDR3 read cycle
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
DDR26 Minimum required DRAM_DATAxx valid window width 510 ps
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDQSx_P
DRAM_DATAxx
DATA
DATA
DATA
DATADATA
DATA
DATADATA
DDR26
(input)
(input)
DRAMjDCLKLPJ \ / DRAM_SDCLKx_N—\ I LP2I> 4 DRAMjDCLKLP (oulM) LPI7> DRAM_DAT (MM) DHAM_DQMx (mum) LP17
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 69
Figure 28 shows the LPDDR3 write timing diagram. The timing parameters for this diagram appear in
Table 51.
Figure 28. LPDDR3 write cycle
Table 50. LPDDR3 timing parameters
1,2
1
All measurements are in reference to V
ref
level.
2
Measurements were done using balanced load and 25
Ω
resistor from outputs to DDR_VREF.
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
LP1 SDRAM clock high-level width t
CH
0.45 0.55 t
CK
LP2 SDRAM clock low-level width t
CL
0.45 0.55 t
CK
LP3 DRAM_CSx_B t
IS
390 — ps
LP4 DRAM_CSx_E t
IH
390 — ps
LP3 DRAM_CAS_B setup time t
IS
275 — ps
LP4 DRAM_CAS_B hold time t
IH
275 — ps
DRAM_SDCLKx_P / \ DRAM_SDCLKx_N \ I DRAM_SDQSX_P (inpul) DRlMiDATAxx (inpul; mi w+ DlTi
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors70
Figure 29 shows the LPDDR3 read timing diagram. The timing parameters for this diagram appear in
Table 52.
Figure 29. LPDDR3 read cycle
Table 51. LPDDR3 write cycle
1,2,3
1
To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQS in
the middle of DRAM_DATAxx window.
2
All measurements are in reference to V
ref
level.
3
Measurements were done using balanced load and 25
Ω
resistor from outputs to DDR_VREF.
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
LP17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P
(differential strobe)
t
DS
275 — ps
LP18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P
(differential strobe)
t
DH
275 — ps
LP21 DRAM_SDQSx_P latching rising transitions to associated clock edges t
DQSS
-0.25 +0.25 t
CK
LP22 DRAM_SDQSx_P high level width t
DQSH
0.4 — t
CK
LP23 DRAM_SDQSx_P low level width t
DQSL
0.4 — t
CK
Table 52. LPDDR3 read cycle
1,2,3
1
To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATA_xx window.
2
All measurements are in reference to V
ref
level.
3
Measurements were done using balanced load and 25
Ω
resistor from outputs to DDR_VREF.
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
LP26 Minimum required DRAM_DATAxx valid window width for LPDDR3 460 ps
/\/})Lj \ \ /
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 71
4.8.4.3 LPDDR2 parameters
Figure 30 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in
Table 53.
Figure 30. LPDDR2 command and address timing diagram
Table 53. LPDDR2 timing parameters
1,2
1
All measurements are in reference to Vref level.
2
Measurements were done using balanced load and 25
Ω
resistor from outputs to DDR_VREF
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
LP1 SDRAM clock high-level width t
CH
0.45 0.55 t
CK
LP2 SDRAM clock low-level width t
CL
0.45 0.55 t
CK
LP3 DRAM_CSx_B, DRAM_SDCKEx setup time t
IS
370 — ps
LP4 DRAM_CSx_B, DRAM_SDCKEx hold time t
IH
370 — ps
LP3 DRAM_CAS_B setup time t
IS
770 — ps
LP4 DRAM_CAS_B hold time t
IH
770 — ps
DRAM_SDCLKx_P
DRAM_CSx_B
DRAM_SDCKEx
DRAM_CAS_B
LP4
LP4
LP3
LP4
LP3
LP2
LP3
LP3
LP1
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors72
Figure 31 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in
Table 54.
Figure 31. LPDDR2 write cycle
1
To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQS in
the middle of DRAM_DATAxx window.
2
All measurements are in reference to Vref level.
3
Measurements were done using balanced load and 25
Ω
resistor from outputs to DDR_VREF.
Table 54. LPDDR2 write cycle
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
LP17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P
(differential strobe)
t
DS
360 — ps
LP18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P
(differential strobe)
t
DH
360 — ps
LP21 DRAM_SDQSx_P latching rising transitions to associated clock edges t
DQSS
-0.25 +0.25 tCK
LP22 DRAM_SDQSx_P high level width t
DQSH
0.4 — tCK
LP23 DRAM_SDQSx_P low level width t
DQSL
0.4 — tCK
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDCLKx_P
DRAM_DATAxx
DRAM_DQMx
Data Data Data Data Data Data Data Data
DM DM DM DM DM DM DM DM
LP17
LP17
LP17
LP17
LP18
LP18
LP18 LP18
LP21
LP23
LP22
(output)
(output)
(output)
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 73
Figure 32 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in
Table 55.
Figure 32. LPDDR2 read cycle
1
To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATA_xx window.
2
All measurements are in reference to Vref level.
3
Measurements were done using balanced load and 25
Ω
resistor from outputs to DDR_VREF.
4.9 General-purpose media interface (GPMI) timing
The i.MX 7Dual GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up
to 200 MB/s I/O speed and individual chip select.
It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode
separately, as described in the following subsections.
4.9.1 Asynchronous mode AC timing (ONFI 1.0 compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The
maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 33 through Figure 36
depicts the relative timing between GPMI signals at the module level for different operations under
asynchronous mode. Table 56 describes the timing parameters (NF1–NF17) that are shown in the figures.
Table 55. LPDDR2 read cycle
ID Parameter Symbol
CK = 533 MHz
Unit
Min Max
LP26 Minimum required DRAM_DATAxx valid window width for LPDDR2 230 ps
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDQSx_P
DRAM_DATAxx
DATA
DATA
DATA
DATADATA
DATA
DATADATA
LP26
(input)
(input)
,__.:._ 4, 3—:
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors74
Figure 33. Command Latch cycle timing diagram
Figure 34. Address Latch cycle timing diagram
Figure 35. Write Data Latch cycle timing diagram
Figure 36. Read Data Latch cycle timing diagram (Non-EDO Mode)
ŽŵŵĂŶĚ
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
E&ϴ E&ϵ
E&ϳ
E&ϲ
E&ϱ
E&Ϯ
E&ϭ
E&ϯ E&ϰ
ĚĚƌĞƐƐ
E&ϭϬ
E&ϭϭ
E&ϵE&ϴ
E&ϳ
E&ϲ
E&ϱ
E&ϭ
E&ϯ
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
EEͺddždž
ĂƚĂƚŽE&
E&ϭϬ
E&ϭϭ
E&ϳ
E&ϲ
E&ϱ
E&ϭ
E&ϯ
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
E&ϵ
E&ϴ
ĂƚĂĨƌŽŵE&
E&ϭϰ
E&ϭϱ
E&ϭϳ
E&ϭϲ
E&ϭϮ
E&ϭϯ
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.
!.$?2%!$9?"
.!.$?$!4!XX
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 75
Figure 37. Read Data Latch cycle timing diagram (EDO mode)
Table 56. Asynchronous mode timing parameters
1
1
GPMI’s Asynchronous mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF1 NAND_CLE setup time tCLS (AS + DS)
×
T - 0.12 [see notes
2,3
]
2
AS minimum value can be 0, while DS/DH minimum value is 1.
3
T = GPMI clock period -0.075ns (half of maximum p-p jitter).
ns
NF2 NAND_CLE hold time tCLH DH
×
T - 0.72 [see note
2
]ns
NF3 NAND_CE0_B setup time tCS (AS + DS + 1)
×
T [see notes
3,2
]ns
NF4 NAND_CE0_B hold time tCH (DH+1)
×
T - 1 [see note
2
]ns
NF5 NAND_WE_B pulse width tWP DS
×
T [see note
2
]ns
NF6 NAND_ALE setup time tALS (AS + DS)
×
T - 0.49 [see notes
3,2
]ns
NF7 NAND_ALE hold time tALH (DH
×
T - 0.42 [see note
2
]ns
NF8 Data setup time tDS DS
×
T - 0.26 [see note
2
]ns
NF9 Data hold time tDH DH
×
T - 1.37 [see note
2
]ns
NF10 Write cycle time tWC (DS + DH)
×
T [see note
2
]ns
NF11 NAND_WE_B hold time tWH DH
×
T [see note
2
]ns
NF12 Ready to NAND_RE_B low tRR
4
4
NF12 is guaranteed by the design.
(AS + 2)
×
T [see
3,2
]—ns
NF13 NAND_RE_B pulse width tRP DS
×
T [see note
2
]ns
NF14 READ cycle time tRC (DS + DH)
×
T [see note
2
]ns
NF15 NAND_RE_B high hold time tREH DH
×
T [see note
2
]ns
NF16 Data setup on read tDSR (DS
×
T -0.67)/18.38 [see
notes
5,6
]
5
Non-EDO mode.
6
EDO mode, GPMI clock
100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).
ns
NF17 Data hold on read tDHR 0.82/11.83 [see notes
5,6
]—ns
ĂƚĂĨƌŽŵE&
E&ϭϰ
E&ϭϱ
E&ϭϳ
E&ϭϲ
E&ϭϮ
E&ϭϯ
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
EEͺddždž
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors76
In EDO mode (Figure 36), NF16/NF17 are different from the definition in non-EDO mode (Figure 35).
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will
sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The
delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 7Dual
Application Processor Reference Manual [IMX7DRM]). The typical value of this control register is 0x8
at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should
be made larger to compensate the board delay.
4.9.2 Source Synchronous mode AC timing (ONFI 2.x compatible)
Figure 38 to Figure 40 show the write and read timing of Source Synchronous mode.
Figure 38. Source Synchronous mode command and address timing diagram
1)
1) 1)
1) 1)
1)
1)
1)
1)
1)
1)
1)
1)
&0' $''
.!.$?#%?"
1$1'B&/(
1$1'B$/(
1$1'B:(5(B%
1$1'B&/.
1$1'B'46
1$1'B'46
2XWSXWHQDEOH
1$1'B'$7$>@
1$1'B'$7$>@
2XWSXWHQDEOH
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 77
Figure 39. Source Synchronous mode data write timing diagram
Figure 40. Source Synchronous mode data read timing diagram
1)
1)
1)
1)
1)
1)
1)
1) 1)
1) 1)
1) 1)
1)
1)
1)
1)
.!.$?#%?"
.!.$?#,%
.!.$?!,%
1$1'B:(5(B%
.!.$?#,+
.!.$?$13
.!.$?$13
2XWSXWHQDEOH
.!.$?$1;=
.!.$?$1;=
2XWSXWHQDEOH
1)
1)
1)
1)
1)
1)
1) 1)
1)
1)
1)
1)
1)
.!.$?#%?"
.!.$?#,%
1$1'B$/(
.!.$?7%2%
.!.$?#,+
.!.$?$13
.!.$?$13
/UTPUTENABLE
.!.$?$!4!;=
.!.$?$!4!;=
/UTPUTENABLE
1)
“I'D" —>:i<——>:k— I:
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors78
Figure 41. NAND_DQS/NAND_DQ Read Valid window
For DDR Source Synchronous mode, Figure 41 shows the timing diagram of
NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns
(max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an
delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be
controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI
chapter of the i.MX 7Dual Application Processor Reference Manual [IMX7DRM]). Generally, the typical
delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board
delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board
delay.
Table 57. Source Synchronous mode timing parameters
1
1
GPMI’s Source Synchronous mode output timing can be controlled by the module’s internal registers
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing
depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF18 NAND_CE0_B access time tCE CE_DELAY
×
T - 0.79 [see note
2
]
2
T = tCK(GPMI clock period) –0.075 ns (half of maximum p-p jitter).
ns
NF19 NAND_CE0_B hold time tCH 0.5
×
tCK - 0.63 [see note
2
]ns
NF20 Command/address NAND_DATAxx setup time tCAS 0.5
×
tCK - 0.05 ns
NF21 Command/address NAND_DATAxx hold time tCAH 0.5
×
tCK - 1.23 ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY
×
T - 0.29 [see note
2
]ns
NF24 postamble delay tPOST POST_DELAY
×
T - 0.78 [see note
2
]ns
NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5
×
tCK - 0.86 ns
NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5
×
tCK - 0.37 ns
NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see note
2
]ns
NF28 Data write setup 0.25
×
tCK - 0.35
NF29 Data write hold 0.25
×
tCK - 0.85
NF30 NAND_DQS/NAND_DQ read setup skew 2.06
NF31 NAND_DQS/NAND_DQ read hold skew 1.95
Ϭ ϭ Ϯ ϯ
.!.$?$13
.!.$?$!4!;=
E&ϯϬ
E&ϯϭ
E&ϯϬ
E&ϯϭ
gawk NAMLCExJa 0 NAMLCLE NANDJKLE NAwaga ‘ NANDJREJ NANDszs NANnjAmm] :35ch mm: er‘ as m
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 79
4.9.3 ONFI NV-DDR2 mode (ONFI 3.2 compatible)
4.9.3.1 Command and address timing
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing.
See Section 4.9.1, “Asynchronous mode AC timing (ONFI 1.0 compatible),” for details.
4.9.3.2 Read and write timing
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 4.9.4, “Toggle
mode AC Timing,” for details.
4.9.4 Toggle mode AC Timing
4.9.4.1 Command and address timing
NOTE
Toggle mode command and address timing is the same as ONFI 1.0
compatible Asynchronous mode AC timing. See Section 4.9.1,
“Asynchronous mode AC timing (ONFI 1.0 compatible),” for details.
4.9.4.2 Read and write timing
Figure 42. Toggle mode data write timing
I? K :m
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors80
Figure 43. Toggle mode data read timing
Table 58. Toggle mode timing parameters
1
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF1 NAND_CLE setup time tCLS (AS + DS)
×
T - 0.12 [see note
2
s
,3
]
NF2 NAND_CLE hold time tCLH DH
×
T - 0.72 [see note
2
]
NF3 NAND_CE0_B setup time tCS (AS + DS)
×
T - 0.58 [see notes
,2
]
NF4 NAND_CE0_B hold time tCH DH
×
T - 1 [see note
2
]
NF5 NAND_WE_B pulse width tWP DS
×
T [see note
2
]
NF6 NAND_ALE setup time tALS (AS + DS)
×
T - 0.49 [see notes
,2
]
NF7 NAND_ALE hold time tALH DH
×
T - 0.42 [see note
2
]
NF8 Command/address NAND_DATAxx setup time tCAS DS
×
T - 0.26 [see note
2
]
NF9 Command/address NAND_DATAxx hold time tCAH DH
×
T - 1.37 [see note
2
]
NF18 NAND_CEx_B access time tCE CE_DELAY
×
T [see notes
4,2
]—ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY
×
T [see notes
5,2
]— ns
NF24 postamble delay tPOST POST_DELAY
×
T +0.43 [see
note
2
]
—ns
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.!.$?$13
.!.$?$!4!;=
.&
T#+
T#+
.&
T#+
T#+
.& T#+
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 81
For DDR Toggle mode, Figure 41 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will
sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 7Dual
Application Processor Reference Manual [IMX7DRM]). Generally, the typical delay value is equal to 0x7
which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored,
the delay value should be made larger to compensate the board delay.
4.10 External peripheral interface parameters
The following subsections provide information on external peripheral interfaces.
4.10.1 ECSPI timing parameters
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing
parameters for master and slave modes.
NF28 Data write setup tDS
6
0.25
×
tCK - 0.32 ns
NF29 Data write hold tDH
6
0.25
×
tCK - 0.79 ns
NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ
7
—3.18
NF31 NAND_DQS/NAND_DQ read hold skew tQHS
7
—3.27
1
The GPMI toggle mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2
AS minimum value can be 0, while DS/DH minimum value is 1.
3
T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter).
4
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started
with enough time of ALE/CLE assertion to low level.
5
PRE_DELAY+1)
(AS+DS)
6
Shown in Figure 42.
7
Shown in Figure 43.
Table 58. Toggle mode timing parameters
1
(continued)
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
‘1,“ a w f1m‘ if 1m 4%
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors82
4.10.1.1 ECSPI Master mode timing
Figure 44 depicts the timing of ECSPI in master mode. Table 59 lists the ECSPI master mode timing
characteristics.
Figure 44. ECSPI Master mode timing diagram
Table 59. ECSPI Master mode timing parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
ECSPIx_SCLK Cycle Time–Write
t
clk
43
15
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
ECSPIx_SCLK High or Low Time–Write
t
SW
21.5
7
—ns
CS3 ECSPIx_SCLK Rise or Fall
1
1
See specific I/O AC parameters Section 4.6, “I/O AC parameters.”
t
RISE/FALL
——ns
CS4 ECSPIx_SS_B pulse width t
CSLH
Half ECSPIx_SCLK period ns
CS5 ECSPIx_SS_B Lead Time (CS setup time) t
SCS
Half ECSPIx_SCLK period - 4 ns
CS6 ECSPIx_SS_B Lag Time (CS hold time) t
HCS
Half ECSPIx_SCLK period - 2 ns
CS7 ECSPIx_MOSI Propagation Delay (C
LOAD
=20pF) t
PDmosi
-1 1 ns
CS8 ECSPIx_MISO Setup Time t
Smiso
18 — ns
CS9 ECSPIx_MISO Hold Time t
Hmiso
0—ns
CS10 RDY to ECSPIx_SS_B Time
2
2
SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
t
SDRY
5—ns
CS7
CS2
CS2
CS4
CS6 CS5
CS8 CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MOSI
ECSPIx_MISO
ECSPIx_RDY_B
CS10
CS3
CS3
CS1
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 83
4.10.1.2 ECSPI Slave mode timing
Figure 45 depicts the timing of ECSPI in Slave mode. Table 60 lists the ECSPI Slave mode timing
characteristics.
Figure 45. ECSPI Slave mode timing diagram
Table 60. ECSPI Slave mode timing parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
ECSPI_SCLK Cycle Time–Write
t
clk
15
43
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
ECSPIx_SCLK High or Low Time–Write
t
SW
7
21.5
—ns
CS4 ECSPIx_SS_B pulse width t
CSLH
Half ECSPIx_SCLK period ns
CS5 ECSPIx_SS_B Lead Time (CS setup time) t
SCS
5—ns
CS6 ECSPIx_SS_B Lag Time (CS hold time) t
HCS
5—ns
CS7 ECSPIx_MOSI Setup Time t
Smosi
4—ns
CS8 ECSPIx_MOSI Hold Time t
Hmosi
4—ns
CS9 ECSPIx_MISO Propagation Delay (C
LOAD
=20pF) t
PDmiso
419ns
CS1
CS7 CS8
CS2
CS2
CS4
CS6 CS5
CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MISO
ECSPIx_MOSI
W ij % Hf ’m
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors84
4.10.2
Ultra-high-speed SD/SDIO/MMC host interface (uSDHC)
AC
timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (single data
rate) timing, eMMC4.4/4.41 (dual data rate) timing and SDR104/50(SD3.0) timing.
4.10.2.1 SD/eMMC4.3 (single data rate) AC timing
Figure 46 depicts the timing of SD/eMMC4.3, and Table 61 lists the SD/eMMC4.3 timing characteristics.
Figure 46. SD/eMMC4.3 Timing
Table 61. SD/eMMC4.3 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (Low Speed) f
PP1
0400kHz
Clock Frequency (SD/SDIO Full Speed/High Speed) f
PP2
0 25/50 MHz
Clock Frequency (MMC Full Speed/High Speed) f
PP3
0 20/52 MHz
Clock Frequency (Identification Mode) f
OD
100 400 kHz
SD2 Clock Low Time t
WL
7—ns
SD3 Clock High Time t
WH
7—ns
SD4 Clock Rise Time t
TLH
—3ns
SD5 Clock Fall Time t
THL
—3ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD6 uSDHC Output Delay t
OD
-6.6 3.6 ns
SD1
SD3
SD5
SD4
SD7
SDx_CLK
SD2
SD8
SD6
Output from uSDHC to card
Input from card to uSDHC
SDx_DATA[7:0]
SDx_DATA[7:0]
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 85
4.10.2.2 eMMC4.4/4.41 (dual data rate) AC timing
Figure 47 depicts the timing of eMMC4.4/4.41. Table 62 lists the eMMC4.4/4.41 timing characteristics.
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).
Figure 47. eMMC4.4/4.41 timing
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD7 uSDHC Input Setup Time t
ISU
2.5 — ns
SD8 uSDHC Input Hold Time
4
t
IH
1.5 — ns
1
In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2
In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0
25 MHz. In High-speed mode,
clock frequency can be any value between 0
50 MHz.
3
In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0
20 MHz. In High-speed mode,
clock frequency can be any value between 0
52 MHz.
4
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
Table 62. eMMC4.4/4.41 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (eMMC4.4/4.41 DDR) f
PP
052MHz
SD1 Clock Frequency (SD3.0 DDR) f
PP
050MHz
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD2 uSDHC Output Delay t
OD
2.7 6.9 ns
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
Table 61. SD/eMMC4.3 interface timing specification(continued)
ID Parameter Symbols Min Max Unit
SD1
SD2
SD3
Output from eSDHCv3 to card
Input from card to eSDHCv3
SDx_DATA[7:0]
SDx_CLK
SD4
SD2
......
......
SDx_DATA[7:0]
fi—fi SCK : ‘ SDZ | SDS ; SD4 D5 SD41 ' SDE I DATU I , I I I I Ompufiwm DAT1 X X : X . X X ' X uSDHC to eMMC DAT7 : : . Strobe —|—,sue—!SD7—’—|—'— | I H DATO 1r- 1:.- npu ram DAM SMMC‘U LISDHC X IX [X X X DAT?
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors86
4.10.2.3 HS400 AC timing—eMMC5.0 only
Figure 48 depicts the timing of HS400. Table 63 lists the HS400 timing characteristics. Be aware that only
data is sampled on both edges of the clock (not applicable to CMD).
The CMD input/output timing for
HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6 and SD7
parameters in Table 65 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for
HS400 mode.
Figure 48. HS400 timing
SD3 uSDHC Input Setup Time t
ISU
2.4 — ns
SD4 uSDHC Input Hold Time t
IH
1.3 — ns
Table 63. HS400 interface timing specifications
ID Parameter Symbols Min Max Unit
Card Input clock
SD1 Clock Frequency fPP 0 200 Mhz
SD2 Clock Low Time t
CL
0.46
×
t
CLK
0.54
×
t
CLK
ns
SD3 Clock High Time t
CH
0.46
×
t
CLK
0.54
×
t
CLK
ns
uSDHC Output/Card inputs DAT (Reference to SCK)
SD4 Output Skew from Data of
Edge of SCK
t
OSkew1
0.45 — ns
SD5 Output Skew from Edge of
SCK to Data
t
OSkew2
0.45 — ns
Table 62. eMMC4.4/4.41 interface timing specification(continued)
ID Parameter Symbols Min Max Unit
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 87
4.10.2.4 HS200 Mode Timing
Figure 49 depicts the timing of HS200 mode, and Table 64 lists the HS200 timing characteristics.
Figure 49. HS200 Mode Timing
uSDHC input/Card Outputs DAT (Reference to Strobe)
SD6 uSDHC input skew t
RQ
0.45 ns
SD7 uSDHC hold skew t
RQH
0.45 ns
Table 64. HS200 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period t
CLK
5.0 — ns
SD2 Clock Low Time t
CL
0.3*t
CLK
0.7*t
CLK
ns
SD2 Clock High Time t
CH
0.3*t
CLK
0.7*t
CLK
ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)
SD5 uSDHC Output Delay t
OD
–1.6 1 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)
1
1
HS200 is for 8 bits while SDR104 is for 4 bits.
SD8 Card Output Data Window t
ODW
0.5*t
CLK
—ns
Table 63. HS400 interface timing specifications(continued)
ID Parameter Symbols Min Max Unit
6&.
ELWRXWSXWIURPX6'+&WRH00&
ELWLQSXWIURPH00&WRX6'+&
6'
6'
6'
6'6'
6' 6'
6'
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors88
4.10.2.5 SDR50/SDR104 AC timing
Figure 50 depicts the timing of SDR50/SDR104, and Table 65 lists the SDR50/SDR104 timing
characteristics.
Figure 50. SDR50/SDR104 timing
Table 65. SDR50/SDR104 interface timing specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period t
CLK
5—ns
SD2 Clock Low Time t
CL
0.46
×
t
CLK
0.54
×
t
CLK
ns
SD3 Clock High Time t
CH
0.46
×
t
CLK
0.54
×
t
CLK
ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD4 uSDHC Output Delay t
OD
–3 1 ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)
SD5 uSDHC Output Delay t
OD
–1.6 1 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD6 uSDHC Input Setup Time t
ISU
2.4 — ns
SD7 uSDHC Input Hold Time t
IH
1.4 — ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)
1
1
Data window in SDR100 mode is variable.
SD8 Card Output Data Window t
ODW
0.5*t
CLK
—ns
SCK
8-bit output from uSDHC to eMMC
8-bit input from eMMC to uSDHC
SD8
SD7
SD6
SD4/SD5
SD2 SD3
SD1
F6134
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 89
4.10.2.6 Bus operation condition for 3.3 V and 1.8 V signaling
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50
mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are
identical to those shown in Table 29, "GPIO DC Parameters," on page 44.
4.10.3 Ethernet controller (ENET) AC electrical specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive
at timing specs/constraints for the physical interface.
4.10.3.1 ENET MII mode timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
4.10.3.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET_RX_CLK frequency.
Figure 51 shows MII receive signal timings. Table 66 describes the timing parameters (M1–M4) shown in
the figure.
Figure 51. MII receive signal timing diagram
ENET_RX_CLK (input)
ENET_RX_DATA3,2,1,0
M3
M4
M1 M2
ENET_RX_ER
ENET_RX_EN
(inputs)
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors90
1
ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
4.10.3.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER, and ENET_TX_CLK)
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET_TX_CLK frequency.
Figure 52 shows MII transmit signal timings. Table 67 describes the timing parameters (M5–M8) shown
in the figure.
Figure 52. MII transmit signal timing diagram
1
ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
Table 66. MII receive signal timing
ID Characteristic
1
Min. Max. Unit
M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to
ENET_RX_CLK setup
5— ns
M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER hold
5— ns
M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period
M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period
Table 67. MII transmit signal timing
ID Characteristic
1
Min. Max. Unit
M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER invalid
5— ns
M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER valid
—20 ns
M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period
M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period
ENET_TX_CLK (input)
ENET_TX_DATA3,2,1,0
M7
M8
M5
M6
ENET_TX_ER
ENET_TX_EN
(outputs)
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 91
4.10.3.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)
Figure 53 shows MII asynchronous input timings. Table 68 describes the timing parameter (M9) shown in
the figure.
Figure 53. MII async inputs timing diagram
1
ENET_COL has the same timing in 10-Mbit 7-wire interface mode.
4.10.3.1.4 MII Serial management channel timing (ENET_MDIO and ENET_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 54 shows MII asynchronous input timings. Table 69 describes the timing parameters (M10–M15)
shown in the figure.
Figure 54. MII serial management channel timing diagram
Table 68. MII asynchronous inputs signal timing
ID Characteristic Min. Max. Unit
M9
1
ENET_CRS to ENET_COL minimum pulse width 1.5 ENET_TX_CLK period
ENET_CRS, ENET_COL
M9
ENET_MDC (output)
ENET_MDIO (output)
M14
M15
M10
M11
M12 M13
ENET_MDIO (input)
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors92
4.10.3.2 RMII mode timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET_RX_EN is used as the
ENET_RX_EN
in RMII. Other signals under RMII mode include
ENET_TX_EN,
ENET_TX_DATA[1:0]
,
ENET_RX_DATA[1:0]
and ENET_RX_ER.
Figure 55 shows RMII mode timings. Table 70 describes the timing parameters (M16–M21) shown in the
figure.
Figure 55. RMII mode signal timing diagram
Table 69. MII serial management channel timing
ID Characteristic Min. Max. Unit
M10 ENET_MDC falling edge to ENET_MDIO output invalid (min.
propagation delay)
0— ns
M11 ENET_MDC falling edge to ENET_MDIO output valid (max.
propagation delay)
—5 ns
M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 ns
M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 ns
M14 ENET_MDC pulse width high 40% 60% ENET_MDC period
M15 ENET_MDC pulse width low 40% 60% ENET_MDC period
ENET_CLK (input)
ENET_TX_EN
M16
M17
M18
M19
M20 M21
ENET_RX_DATA[1:0]
ENET_TX_DATA (output)
ENET_RX_ER
ENET_RX_EN (input)
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 93
4.10.3.3 Signal switching specifications
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver
devices.
Table 70. RMII signal timing
ID Characteristic Min. Max. Unit
M16 ENET_CLK pulse width high 35% 65% ENET_CLK period
M17 ENET_CLK pulse width low 35% 65% ENET_CLK period
M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 ns
M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid 15 ns
M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to
ENET_CLK setup
4— ns
M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER
hold
2— ns
Table 71. RGMII signal switching specifications
1
1
The timings assume the following configuration:
DDR_SEL = (11)b
DSE (drive-strength) = (111)b
Symbol Description Min. Max. Unit
T
cyc2
2
For 10 Mbps and 100 Mbps, T
cyc
will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.
Clock cycle duration 7.2 8.8 ns
T
skewT3
3
For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value
is unspecified.
Data to clock output skew at transmitter -500 500 ps
T
skewR3
Data to clock input skew at receiver 1 2.6 ns
Duty_G
4
4
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned
between.
Duty cycle for Gigabit 45 55 %
Duty_T
4
Duty cycle for 10/100T 40 60 %
Tr/Tf Rise/fall time (20–80%) 0.75 ns
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors94
Figure 56. RGMII transmit signal timing diagram original
Figure 57. RGMII receive signal timing diagram original
Figure 58. RGMII receive signal timing diagram with internal delay
4.10.4 Flexible controller area network (flexcan) ac electrical specifications
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing
the CAN protocol according to the CAN 2.0 B protocol specification. The processor has two CAN
modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O
pins. See the IOMUXC chapter of the i.MX 7Dual Application Processor Reference Manual (IMX7DRM)
to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX,
respectively.
2'-))?48#ATTRANSMITTER
2'-))?48$NNTO
2'-))?48?#4,
2'-))?48#ATRECEIVER
4SKEW4
48%. 48%22
4SKEW2
2'-))?28#ATTRANSMITTER
2'-))?28$NNTO
2'-))?28?#4,
2'-))?28#ATRECEIVER
4SKEW4
28$6 28%22
4SKEW2
2'-))?28#SOURCEOFDATA
2'-))?28$NNTO
2'-))?28?#4,
2'-))?28#ATRECEIVER
)NTERNALDELAY
4SETUP4 4HOLD4
4SETUP2 4HOLD2
28$6 28%22
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 95
4.10.5 I
2
C module timing parameters
This section describes the timing parameters of the I
2
C module. Figure 59 depicts the timing of I
2
C
module, and Table 72 lists the I
2
C module timing characteristics.
Figure 59. I
2
C bus timing
Table 72. I
2
C module timing parameters
ID Parameter
Standard Mode Fast Mode
Unit
Min Max Min Max
IC1 I2Cx_SCL cycle time 10 2.5
µ
s
IC2 Hold time (repeated) START condition 4.0 0.6
µ
s
IC3 Set-up time for STOP condition 4.0 0.6
µ
s
IC4 Data hold time 0
1
1
A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling
edge of I2Cx_SCL.
3.45
2
2
The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.
0
1
0.9
2
µ
s
IC5 HIGH Period of I2Cx_SCL Clock 4.0 0.6
µ
s
IC6 LOW Period of the I2Cx_SCL Clock 4.7 1.3
µ
s
IC7 Set-up time for a repeated START condition 4.7 0.6
µ
s
IC8 Data set-up time 250 100
3
3
A Fast-mode I
2
C-bus device can be used in a Standard-mode I
2
C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I
2
C-bus specification)
before the I2Cx_SCL line is released.
—ns
IC9 Bus free time between a STOP and START condition 4.7 1.3
µ
s
IC10 Rise time of both I2Cx_SDA and I2Cx_SCL signals 1000 20 + 0.1C
b4
4
C
b
= total capacitance of one bus line in pF.
300 ns
IC11 Fall time of both I2Cx_SDA and I2Cx_SCL signals 300 20 + 0.1C
b4
300 ns
IC12 Capacitive load for each bus line (C
b
)—400400pF
IC10 IC11 IC9
IC2 IC8 IC4 IC7 IC3
IC6
IC10
IC5
IC11 START STOP START
START
I2Cx_SDA
I2Cx_SCL
IC1
LCDn_DATA[23 00] . LCDn Conlrul SIgna‘s I
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors96
4.10.6 LCD controller (LCDIF) timing parameters
Figure 60 shows the LCDIF timing and Table yy lists the timing parameters.
Figure 60. LCD timing
4.10.7 Parallel CMOS sensor interface (CSI) timing parameters
4.10.7.1 Gated clock mode timing
Figure 61 and Figure 62 shows the gated clock mode timings for CSI, and Table 74 describes the timing
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC
Table 73. LCD timing parameters
ID Parameter Symbol Min Max Unit
L1 LCD pixel clock frequency tCLK(LCD) - 150 MHz
L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 - ns
L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 - ns
L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns
L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns
L6 LCD pixel clock high to control signals valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns
L7 LCD pixel clock low to control signals valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 97
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.
Figure 61. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge
Figure 62. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge
Table 74. CSI Gated Clock Mode Timing Parameters
ID Parameter Symbol Min. Max. Units
P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 ns
P2 CSI_HSYNC setup time tHsu 1 ns
P3 CSI DATA setup time tDsu 1 ns
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[15:00]
P5
P1
P3 P4
CSI_HSYNC
P2 P6
P7
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[15:00]
P6
P1
P3 P4
CSI_HSYNC
P2 P5
P7
K dim m fig 1//
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors98
4.10.7.2 Ungated clock mode timing
Figure 63 shows the ungated clock mode timings of CSI, and Table 75 describes the timing parameters
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are
used, and the CSI_HSYNC signal is ignored.
Figure 63. CSI Ungated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as
dumb or smart as follows:
Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync
(HSYNC)) and output-only Bayer and statistics data.
Smart sensors support CCIR656 video decoder formats and perform additional processing of the
image (for example, image compression, image pre-filtering, and various data output formats).
P4 CSI DATA hold time tDh 1 ns
P5 CSI pixel clock high time tCLKh 3.75 ns
P6 CSI pixel clock low time tCLKl 3.75 ns
P7 CSI pixel clock frequency fCLK 148.5 MHz
Table 75. CSI Ungated Clock Mode Timing Parameters
ID Parameter Symbol Min. Max. Units
P1 CSI_VSYNC to pixel clock time tVSYNC 33.5 ns
P2 CSI DATA setup time tDsu 1 ns
P3 CSI DATA hold time tDh 1 ns
P4 CSI pixel clock high time tCLKh 3.75 ns
P5 CSI pixel clock low time tCLKl 3.75 ns
P6 CSI pixel clock frequency fCLK 148.5 MHz
Table 74. CSI Gated Clock Mode Timing Parameters(continued)
ID Parameter Symbol Min. Max. Units
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[15:00]
P4
P1
P2 P3
P5
P6
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 99
The following subsections describe the CSI timing in gated and ungated clock modes.
4.10.8 MIPI PHY timing parameters
4.10.8.1
This section describes MIPI PHY electrical specifications.
Electrical and Timing
Information
Table 76. Electrical and Timing Information
Symbol Parameters Test Conditions Min Typ Max Unit
Input DC Specifications - Apply to DSI_CLK_P/DSI_CLK_N and DSI_DATA_P/DSI_DATA_N inputs
V
I
Input signal voltage range Transient voltage range is
limited from -300 mV to
1600 mV
-50 1350 mV
V
LEAK
Input leakage current VGNDSH(min) = VI =
VGNDSH(max) +
VOH(absmax)
Lane module in LP Receive
Mode
-10 10 mA
V
GNDSH
Ground Shift -50 50 mV
V
OH(absmax)
Maximum transient output
voltage level
——1.45V
t
voh(absmax)
Maximum transient time
above VOH(absmax)
——20ns
HS Line Drivers DC Specifications
|V
OD
| HS Transmit Differential
output voltage magnitude
80
Ω<
= RL< = 125
Ω
140 200 270 mV
Δ
|V
OD
| Change in Differential output
voltage magnitude between
logic states
80
Ω<
= RL< = 125
Ω
——10mV
V
CMTX
Steady-state common-mode
output voltage.
80
Ω<
= RL< = 125
Ω
150 200 250 mV
Δ
V
CMTX
(1,0) Changes in steady-state
common-mode output voltage
between logic states
80
Ω<
= RL< = 125
Ω
—— 5mV
V
OHHS
HS output high voltage 80
Ω<
= RL< = 125
Ω
360 mV
Z
OS
Single-ended output
impedance.
—405062.5
Ω
Δ
Z
OS
Single-ended output
impedance mismatch.
——10%
LP Line Drivers DC Specifications
V
OL
Output low-level SE voltage -50 50 mV
V
OH
Output high-level SE voltage 1.1 1.2 1.3 V
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors100
Z
OLP
Single-ended output
impedance.
—110
Ω
Δ
Z
OLP(01-10)
Single-ended output
impedance mismatch driving
opposite level
——20%
Δ
Z
OLP(0-11)
Single-ended output
impedance mismatch driving
same level
——5%
HS Line Receiver DC Specifications
V
IDTH
Differential input high voltage
threshold
——70mV
V
IDTL
Differential input low voltage
threshold
—-70mV
V
IHHS
Single ended input high
voltage
460 mV
V
ILHS
Single ended input low
voltage
—-40mV
V
CMRXDC
Input common mode voltage 70 330 mV
Z
ID
Differential input impedance 80 125
Ω
LP Line Receiver DC Specifications
V
IL
Input low voltage 550 mV
V
IH
Input high voltage 920 mV
V
HYST
Input hysteresis 25 mV
Contention Line Receiver DC Specifications
V
ILF
Input low fault threshold 200 450 mV
Table 76. Electrical and Timing Information(continued)
Symbol Parameters Test Conditions Min Typ Max Unit
\\ //
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 101
4.10.8.2 MIPI PHY signaling levels
The signal levels are different for differential HS mode and single-ended LP mode. Figure 64 shows both
the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below
the LP low-level input threshold such that LP receiver always detects low on HS signals.
Figure 64. MIPI PHY Signaling Levels
4.10.8.3 MIPI HS line driver characteristics
Figure 65. Ideal Single-ended and Resulting Differential HS Signals
HS Vout
Range
HS Vcm
Range
Max V
OD
Min V
OD
V
CMTX,MIN
V
OLHS
V
CMTX,MAX
V
OHHS
LP V
IL
LP
V
OL
LP
V
IH
V
OH,MAX
V
OH,MIN
V
IH
V
IL
LP Threshold
Region
V
GNDSH,MA
X
V
GNDSH,MIN
GND
LP V
OL
HS Differential Signaling LP Single-ended Signaling
V
OD(1)
V
OD(1)
V
OD(0)
V
OD(0)
V
OD
= V
DP
- V
DN
V
CMTX
= (V
DP +
V
DN
)/2
0V
(Differential)
V
DN
V
DP
Ideal Single-Ended High Speed Signals
Ideal Differential High Speed Signals
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors102
4.10.8.4
Possible
Δ
VCMTX and
Δ
VOD Distortions of the Single-ended HS Signals
Figure 66. Possible
Δ
VCMTX and
Δ
VOD Distortions of the Single-ended HS Signals
4.10.8.5 MIPI PHY switching characteristics
Table 77. Electrical and Timing Information
Symbol Parameters Test Conditions Min Typ Max Unit
HS Line Drivers AC Specifications
Maximum serial data rate (forward
direction)
On DATAP/N outputs.
80
Ω
<= RL <= 125
Ω
80 1500 Mbps
F
DDRCLK
DDR CLK frequency On DATAP/N outputs. 40 750 MHz
P
DDRCLK
DDR CLK period 80
Ω<
= RL< = 125
Ω
1.33 — 25 ns
t
CDC
DDR CLK duty cycle t
CDC
=
t
CPH
/
P
DDRCLK
—50—%
t
CPH
DDR CLK high time 1 UI
t
CPL
DDR CLK low time 1 UI
DDR CLK / DATA Jitter 75 ps pk–pk
t
SKEW[PN]
Intra-Pair (Pulse) skew 0.075 UI
t
SKEW[TX]
Data to Clock Skew 0.350 0.650 UI
t
r
Differential output signal rise time 20% to 80%, RL = 50
Ω
150 0.3UI ps
t
f
Differential output signal fall time 20% to 80%, RL = 50
Ω
150 0.3UI ps
Δ
V
CMTX(HF)
Common level variation above 450 MHz 80
Ω
<= RL< = 125
Ω
——15mV
rms
Δ
V
CMTX(LF)
Common level variation between 50
MHz and 450 MHz.
80
Ω
<= RL< = 125
Ω
——25mV
p
V
OD(0)
V
OD (1)
V
OD
/2
V
OD
/2
V
OD
(SE HS Signals)
Static V
CMTX
(SE HS Signals)
Dynamic V
CMTX
(SE HS Signals)
V
DN
V
CM TX
V
DP
V
DN
V
CMTX
V
DP
V
DN
V
CM TX
V
DP
V
OD(0)
Δ
Δ
Δ
Δ
Δ
5/5
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 103
LP Line Drivers AC Specifications
t
rlp,
t
flp
Single ended output rise/fall time 15% to 85%, C
L
<70 pF 25 ns
t
reo
30% to 85%, C
L
<70 pF 35 ns
δ
V/
δ
t
SR
Signal slew rate 15% to 85%, C
L
<70 pF 120 mV/ns
C
L
Load capacitance 0 70 pF
HS Line Receiver AC Specifications
t
SETUP[RX]
Data to Clock Receiver Setup time 0.15 UI
t
HOLD[RX]
Clock to Data Receiver Hold time 0.15 UI
Δ
V
CMRX(HF)
Common mode interference beyond
450 MHz
——200mVpp
Δ
V
CMRX(LF)
Common mode interference between
50 MHz and 450 MHz.
—-5050mVpp
C
CM
Common mode termination 60 pF
LP Line Receiver AC Specifications
e
SPIKE
Input pulse rejection 300 Vps
T
MIN
Minimum pulse response 50 ns
V
INT
Pk-to-Pk interference voltage 400 mV
f
INT
Interference frequency 450 MHz
Model Parameters used for Driver Load switching performance evaluation
C
PAD
Equivalent Single ended I/O PAD
capacitance.
——1pF
C
PIN
Equivalent Single ended Package +
PCB capacitance.
——2pF
L
S
Equivalent wire bond series inductance 1.5 nH
R
S
Equivalent wire bond series resistance 0.15
Ω
R
L
Load resistance 80 100 125
Ω
Table 77. Electrical and Timing Information(continued)
Symbol Parameters Test Conditions Min Typ Max Unit
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors104
4.10.8.6 High-speed clock timing
Figure 67. DDR Clock Definition
4.10.8.7 Forward high-speed data transmission timing
The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in
Figure 68:
Figure 68. Data to Clock Timing Definitions
4.10.8.8 Reverse high-speed data transmission timing
Figure 69. Reverse High-Speed Data Transmission Timing at Slave Side
#,+P
#,+N $ATA"IT4IME5)
5) 
).34
$$2#LOCK0ERIOD5) 
).34 5) 
).34
5) 
).34
$ATA"IT4IME5)
#,+P
2EFERENCE4IME
4#,+P
43%450 4(/,$
5)).34
43+%7
5)).34
#,+N
.2:$ATA
#,+?.
#,+?0 #LOCKTO$ATA
5) 5)
3KEW
4
4$
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 105
4.10.8.9 Low-power receiver timing
Input Glitch Rejection of Low-Power Receivers
4.10.9 PCIe PHY parameters
The PCIe interface is designed to be compatible with PCIe specification Gen2 x1 lane and supports the
PCI Express 1.1/2.0 standard.
4.10.9.1 PCIE_REXT reference resistor connection
The impedance calibration process requires connection of reference resistor 4.7 kΩ. 1% precision resistor
on PCIE_REXT pads to ground. It is used for termination impedance calibration.
4.10.10 Pulse width modulator (PWM) timing parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external
pin.
Figure 70 depicts the timing of the PWM, and Table 78 lists the PWM timing parameters.
Figure 70. PWM Timing
Table 78. PWM output timing parameters
ID Parameter Min Max Unit
PWM Module Clock Frequency 0 ipg_clk MHz
2*TLPX 2*TLPX
TMIN-RX TMIN-RX
eSPIKE
eSPIKE
Input
Output
VIH
VIL
07-N?/54
0 0
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors106
4.10.11 QUAD SPI (QSPI) Timing Parameters
Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns.
4.10.11.1 SDR Mode
Figure 71. QuadSPI Input/Read Timing (SDR mode with internal sampling)
Figure 72. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)
P1 PWM output pulse width high 15 ns
P2 PWM output pulse width low 15 ns
Table 79. QuadSPI Input Timing (SDR mode with internal sampling)
Symbol Parameter
Value
Unit
Min Max
T
IS
Setup time for incoming data 8.67 ns
T
IH
Hold time requirement for incoming data 0 ns
Table 78. PWM output timing parameters(continued)
7,6 7,+ 7,6 7,+
463,[B6&/.
463,[B'$7$>@

7
,6
7
,6
7
,+
7
,+
463,[B6&/.
463,[B'$7$>@
463,[B'46
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 107
NOTE
For internal sampling, the timing values assumes using sample point 0,
that is QuadSPIx_SMPR[SDRSMP] = 0.
For loopback DQS sampling, the data strobe is output to the DQS pad
together with the serial clock. The data strobe is looped back from DQS
pad and used to sample input data.
Figure 73. QuadSPI Output/Write Timing (SDR mode)
NOTE
T
css
and T
csh
are configured by the QuadSPIx_FLSHCR register, the default
value of 3 are shown on the timing. Please refer to the i.MX 6SoloX
Reference Manual (IMX6ULLRM) for more details.
Table 80. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)
Symbol Parameter
Value
Unit
Min Max
T
IS
Setup time for incoming data 2 ns
T
IH
Hold time requirement for incoming data 1 ns
Table 81. QuadSPI Output/Write Timing (SDR mode)
Symbol Parameter
Value
Unit
Min Max
T
DVO
Output data valid time 2.5 ns
T
DHO
Output data hold time -0.5 ns
T
CK
SCK clock period 10 ns
T
CSS
Chip select output setup time 3 SCK cycle(s)
T
CSH
Chip select output hold time 3 SCK cycle(s)
7&66 7&. 7&6+
7'92
7'+2
7'92
7'+2
463,[B6&/.
463,[B&6
463,[B6,2
1| + _H
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors108
4.10.11.2 DDR Mode
Figure 74. QuadSPI Input/Read Timing (DDR mode with internal sampling)
Figure 75. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)
NOTE
For internal sampling, the timing values assumes using sample point 0,
that is QuadSPIx_SMPR[SDRSMP] = 0.
Table 82. QuadSPI Input/Read Timing (DDR mode with internal sampling)
Symbol Parameter
Value
Unit
Min Max
T
IS
Setup time for incoming data 8.67 ns
T
IH
Hold time requirement for incoming data 0 ns
Table 83. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)
Symbol Parameter
Value
Unit
Min Max
T
IS
Setup time for incoming data 2 ns
T
IH
Hold time requirement for incoming data 1 ns
7,6 7,+ 7,6 7,+
463,[B6&/.
463,[B'$7$>@

7
,6
7
,+
7
,6
7
,+
463,[B6&/.
463,[B'$7$>@
463,[B'46
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 109
For loopback DQS sampling, the data strobe is output to the DQS pad
together with the serial clock. The data strobe is looped back from DQS
pad and used to sample input data.
Figure 76. QuadSPI Output/Write Timing (DDR mode)
NOTE
T
css
and T
csh
are configured by the QuadSPIx_FLSHCR register, the default
value of 3 are shown on the timing. See the i.MX 7Dual Reference Manual
(IMX7DRM) for more details.
4.10.12
SAI/I
2
S switching specifications
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.
All timings are given for noninverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] =
0) and noninverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.
Table 84. QuadSPI Output/Write Timing (DDR mode)
Symbol Parameter
Value
Unit
Min Max
T
DVO
Output data valid time (0.25 x T
SCLK
) + 2.5 ns
T
DHO
Output data hold time (0.25 x T
SCLK
) - 0.5 ns
T
CK
SCK clock period 20 ns
T
CSS
Chip select output setup time 3 SCK cycle(s)
T
CSH
Chip select output hold time 3 SCK cycle(s)
Table 85. Master mode SAI timing
Num Characteristic Min Max Unit
S1 SAI_MCLK cycle time 20 ns
S2 SAI_MCLK pulse width high/low 40% 60% MCLK period
S3 SAI_BCLK cycle time 40 ns
S4 SAI_BCLK pulse width high/low 40% 60% BCLK period

7&66 7&.
7'92
7'+2
7'92
7'+2
7&6+
463,[B6&/.
463,[B&6
463,[B6,2
IZSJACLK (output) IszCLK (outpul) |2$_FS mucpun IZSJS unpuu IZSiTXD |2$_HXD .4311 —V.s2 fl— —V.sz ’— *l
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors110
Figure 77. SAI timing — master modes
S5 SAI_BCLK to SAI_FS output valid 15 ns
S6 SAI_BCLK to SAI_FS output invalid 0 ns
S7 SAI_BCLK to SAI_TXD valid 15 ns
S8 SAI_BCLK to SAI_TXD invalid 0 ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 ns
Table 86. Master mode SAI timing
Num Characteristic Min Max Unit
S11 SAI_BCLK cycle time (input) 40 ns
S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period
S13 SAI_FS input setup before SAI_BCLK 10 ns
S14 SAI_FA input hold after SAI_BCLK 2 ns
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid 20 ns
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 ns
S17 SAI_RXD setup before SAI_BCLK 10 ns
S18 SAI_RXD hold after SAI_BCLK 2 ns
Table 85. Master mode SAI timing(continued)
Num Characteristic Min Max Unit
lasJCLK (Input) Izsjs (output) Izsjs (mun) |2S_TXD I2S,RXD
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 111
Figure 78. SAI timing — slave modes
4.10.13 SCAN JTAG controller (SJC) timing parameters
Figure 79 depicts the SJC test clock input timing. Figure 80 depicts the SJC boundary scan timing.
Figure 81 depicts the SJC test access port. Signal parameters are listed in Table 87.
Figure 79. Test clock input timing diagram
JTAG_TCK
(Input) VM VM
VIH VIL
SJ1
SJ2 SJ2
SJ3
SJ3
\HH
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors112
Figure 80. Boundary scan (JTAG) timing diagram
JTAG_TCK
(Input)
Data
Inputs
Data
Outputs
Data
Outputs
Data
Outputs
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
SJ4 SJ5
SJ6
SJ7
SJ6
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 113
Figure 81. Test access port timing diagram
Figure 82. JTAG_TRST_B timing diagram
Table 87. JTAG timing
ID Parameter
1,2
All Frequencies
Unit
Min Max
SJ0 JTAG_TCK frequency of operation 1/(3•T
DC
)
1
0.001 22 MHz
SJ1 JTAG_TCK cycle time in Crystal mode 45 ns
SJ2 JTAG_TCK clock pulse width measured at
V
M
2
22.5 — ns
SJ3 JTAG_TCK rise and fall times 3 ns
SJ4 Boundary scan input data set-up time 5 ns
SJ5 Boundary scan input data hold time 24 ns
SJ6 JTAG_TCK low to output data valid 40 ns
SJ7 JTAG_TCK low to output high impedance 40 ns
SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 ns
JTAG_TCK
(Input)
JTAG_TDI
(Input)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
JTAG_TMS
SJ8 SJ9
SJ10
SJ11
SJ10
JTAG_TCK
(Input)
JTAG_TRST_B
(Input)
SJ13
SJ12
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors114
4.10.14 UART I/O configuration and timing parameters
4.10.14.1 UART RS-232 I/O configuration in different modes
The i.MX 7Dual UART interfaces can serve both as DTE or DCE device. This can be configured by the
DCEDTE control bit (default 0—DCE mode). Table 88 shows the UART I/O configuration based on the
enabled mode.
4.10.14.2 UART RS-232 Serial mode timing
This section describes the electrical information of the UART module in the RS-232 mode.
SJ9 JTAG_TMS, JTAG_TDI data hold time 25 ns
SJ10 JTAG_TCK low to JTAG_TDO data valid 44 ns
SJ11 JTAG_TCK low to JTAG_TDO high impedance 44 ns
SJ12 JTAG_TRST_B assert time 100 ns
SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 ns
1
T
DC
= target frequency of SJC
2
V
M
= mid-point voltage
Table 88. UART I/O configuration vs. mode
Port
DTE Mode DCE Mode
Direction Description Direction Description
UARTx_RTS_B Output UARTx_RTS_B from DTE to DCE Input UARTx_RTS_B from DTE to DCE
UARTx_CTS_B Input UARTx_CTS_B from DCE to DTE Output UARTx_CTS_B from DCE to DTE
UARTx_TX_ DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE
UARTx_RX
_DATA
Output Serial data from DTE to DCE Input Serial data from DTE to DCE
Table 87. JTAG timing(continued)
ID Parameter
1,2
All Frequencies
Unit
Min Max
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 115
4.10.14.2.1 UART transmitter
Figure 83 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit
format. Table 89 lists the UART RS-232 Serial mode transmit timing characteristics.
Figure 83. UART RS-232 Serial mode transmit timing diagram
4.10.14.2.2 UART receiver
Figure 84 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 90 lists
Serial mode receive timing characteristics.
Figure 84. UART RS-232 Serial mode receive timing diagram
4.10.15 USB HSIC timing
This section describes the electrical information of the USB HSIC port.
Table 89. RS-232 Serial mode transmit timing parameters
ID Parameter Symbol Min Max Unit
UA1 Transmit Bit Time t
Tbit
1/F
baud_rate1
- T
ref_clk2
1
F
baud_rate
: Baud rate frequency. The maximum baud rate the UART can support is (
ipg_perclk
frequency)/16.
2
T
ref_clk
: The period of UART reference clock
ref_clk
(
ipg_perclk
after RFDIV divider).
1/F
baud_rate
+ T
ref_clk
Table 90. RS-232 Serial mode receive timing parameters
ID Parameter Symbol Min Max Unit
UA2 Receive Bit Time
1
1
The UART receiver can tolerate 1/(16 x F
baud_rate
) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 x F
baud_rate
).
t
Rbit
1/F
baud_rate2
- 1/(16
x F
baud_rate
)
2
F
baud_rate
: Baud rate frequency. The maximum baud rate the UART can support is (
ipg_perclk
frequency)/16.
1/F
baud_rate
+
1/(16 x F
baud_rate
)
Start
Bit Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_TX_DATA
(output) Bit 3 STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA1
UA1 UA1
UA1
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_RX_DATA
(output)
Bit 3
Start
Bit STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA2 UA2
UA2 UA2
do
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors116
NOTE
HSIC is DDR signal, following timing spec is for both rising and falling
edge.
4.10.15.1 Transmit timing
Figure 85. USB HSIC transmit waveform
4.10.15.2 Receive timing
Figure 86. USB HSIC receive waveform
Table 91. USB HSIC transmit parameters
Name Parameter Min Max Unit Comment
Tstrobe strobe period 4.165 4.169 ns
Todelay data output delay time 550 1350 ps Measured at 50% point
Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points
Table 92. USB HSIC receive parameters
1
1
The timings in the table are guaranteed when:
—AC I/O voltage is between 0.9x to 1x of the I/O supply
—DDR_SEL configuration bits of the I/O are set to (10)b
Name Parameter Min Max Unit Comment
Tstrobe strobe period 4.165 4.169 ns
Thold data hold time 300 ps Measured at 50% point
Tsetup data setup time 365 ps Measured at 50% point
Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points
USB_H_STROBE
USB_H_DATA
Todelay
Tstrobe
Todelay
USB_H_STROBE
USB_H_DATA
Thold
Tstrobe
Tsetup
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 117
4.10.16 USB PHY parameters
This section describes the USB-OTG PHY parameters.
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision
2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB
Revision 2.0 Specification is not applicable to Host port):
USB ENGINEERING CHANGE NOTICE
Title: 5V Short Circuit Withstand Requirement Change
Applies to: Universal Serial Bus Specification, Revision 2.0
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
USB ENGINEERING CHANGE NOTICE
Title: Pull-up/Pull-down resistors
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: Suspend Current Limit Changes
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: USB 2.0 Phase Locked SOFs
Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
Revision 2.0, version 1.1a, July 27, 2010
Battery Charging Specification (available from USB-IF)
Revision 1.2, December 7, 2010
4.10.16.1 USB_OTG*_REXT reference resistor connection
The bias generation and impedance calibration process for the USB OTG PHYs requires connection of
reference resistors 200 Ω 1% precision on each of USB_OTG1_REXT and USB_OTG2_REXT pads to
ground.
4.10.16.2 USB_OTG_CHD_B USB battery charger detection external pullup
resistor connection
The usage and external resistor connection for the USB_OTG_CHD_B pin are described in Table 3,
Table 7, and Section 4.7.3, “USB battery charger detection driver impedance.”
Electrical characteristics
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors118
4.11 12-Bit A/D converter (ADC)
Table 93. Recommended operating conditions for 12-bit ADC
Characteristics Symbol Min Typ Max Unit
Supply Voltage AVDD18 1.7 1.8 1.9 V
VDDA10 0.95 1 1.05 V
Operating Temp T
J
–25 — 105 C
Analog Input Channel 16 Channel
Analog Input Range
1
1
DO=111111111111 @AIN=AVDD18 & DO=000000000000 @AIN=AVSS18 (Input full-scale voltage = AVDD18)
ADC
x
_IN
x
AGND — VREF V
Main Clock Frequency FCLK 300K 6M Hz
Start of conversion clk frequency (FCLK/3) FSOC 50K 1M Hz
External Input Resistance of ADC
2
2
R
IEXT
= Output resistance of the ADC driver = Output resistance of signal generator + Series parasitic resistance between
signal source and ADC input (for example, PCB and bonding wire resistance and ESD protection resistance)
R
IEXT
50 250
Ω
Table 94. DC Electrical characteristics
Specification Symbol Min Typ Max Unit Conditions
Resolution — — 12 12 Bits
Differential
Non-Linearity
DNL ± 2.0 ± 2.0 LSB PD=Low
FCLK=6MHz
FSOC=1MHz
FAIN=10kHz
Ramp wave
Integral
Non-Linearity
INL ± 6.0 ± 6.0 LSB
Top Offset Voltage EOT ±10 ± 100 LSB
Bottom Offset
Voltage
EOB ±11 ± 100 LSB
Table 95. AC Electrical characteristics
Specification Symbol Min Typ Max Unit
Main Clock Duty Ratio 45 45 55 %
Analog Input Frequency CH #15-0 FAIN DC 50k 100K Hz
Normal Operation Current Consumption
1
VDDA_ADCx_1P8
2
—0.531.90 mA
VDDA_1P0_CAP
2
—0.020.10 mA
Boot mode configuration
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 119
5 Boot mode configuration
This section provides information on Boot mode configuration pins allocation and boot devices interfaces
allocation.
5.1 Boot mode configuration pins
Table 96 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the “System Boot,
Fusemap, and eFuse” chapter in the i.MX 7Dual Application Processor Reference Manual (IMX7DRM).
Power Down Current
2
IPD
3
— 3.0 300
μΑ
Signal to Noise and Distortion Ratio SNDR 54 60 dB
1
Normal operation current consumption includes only the current from the ADC core. It does not include static current from the
power pads.
2
Power-down current includes only the current from the ADC core. It does not include static current from the power pads.
3
IOP and IPD are measurable only on the ADC core's test chips. Because AVDD10 is shared with internal logic power, IOP
and IPD in the test plan only measure current consumption @ AVDD18, VREF.
Table 96. Fuses and associated pins used for boot
Pin Direction
at Reset
eFuse
name
State during reset
(POR_B
asserted)
State after reset
(POR_B
deasserted)
Details
BOOT_MODE0 Input N/A Hi-Z Hi-Z Boot mode selection
BOOT_MODE1 Input N/A Hi-Z Hi-Z Boot mode selection
Table 95. AC Electrical characteristics(continued)
Specification Symbol Min Typ Max Unit
Boot mode configuration
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors120
5.2 Boot device interface allocation
Table 97 lists the interfaces that can be used by the boot process in accordance with the specific Boot
mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation,
which are configured during boot when appropriate.
LCD1_DATA00 Input BT_CFG[0] 100K Pull Down Keeper Boot options, pin value overrides fuse
settings for BT_FUSE_SEL=’0’. Signal
configuration as fuse override input at
power up.
These are special I/O lines that control the
boot configuration during product
development. In production, the boot
configuration can be controlled by fuses.
LCD1_DATA01 Input BT_CFG[1] 100K Pull Down Keeper
LCD1_DATA02 Input BT_CFG[2] 100K Pull Down Keeper
LCD1_DATA03 Input BT_CFG[3] 100K Pull Down Keeper
LCD1_DATA04 Input BT_CFG[4] 100K Pull Down Keeper
LCD1_DATA05 Input BT_CFG[5] 100K Pull Down Keeper
LCD1_DATA06 Input BT_CFG[6] 100K Pull Down Keeper
LCD1_DATA07 Input BT_CFG[7] 100K Pull Down Keeper
LCD1_DATA08 Input BT_CFG[8] 100K Pull Down Keeper
LCD1_DATA09 Input BT_CFG[9] 100K Pull Down Keeper
LCD1_DATA10 Input BT_CFG[10] 100K Pull Down Keeper
LCD1_DATA11 Input BT_CFG[11] 100K Pull Down Keeper
LCD1_DATA12 Input BT_CFG[12] 100K Pull Down Keeper
LCD1_DATA13 Input BT_CFG[13] 100K Pull Down Keeper
LCD1_DATA14 Input BT_CFG[14] 100K Pull Down Keeper
LCD1_DATA15 Input BT_CFG[15] 100K Pull Down Keeper
LCD1_DATA16 Input BT_CFG[16] 100K Pull Down Keeper
LCD1_DATA17 Input BT_CFG[17] 100K Pull Down Keeper
LCD1_DATA18 Input BT_CFG[18] 100K Pull Down Keeper
LCD1_DATA19 Input BT_CFG[19] 100K Pull Down Keeper
Table 97. Interface allocation during boot
Interface IP Instance Allocated Pads During Boot Comment
QSPI QSPI EPDC_D0, EPDC_D1, EPDC_D2, EPDC_D3,
EPDC_D4, EPDC_D5, EPDC_D6, EPDC_D7,
EPDC_D8, EPDC_D9, EPDC_D10, EPDC_D11,
EPDC_D12, EPDC_D13, EPDC_D14, EPDC_D15
SPI ECSPI-1 ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO,
ECSPI1_SS0, UART1_RXD, UART1_TXD,
UART2_RXD
The chip-select pin used depends
on the fuse "CS select (SPI only)"
Table 96. Fuses and associated pins used for boot(continued)
Pin Direction
at Reset
eFuse
name
State during reset
(POR_B
asserted)
State after reset
(POR_B
deasserted)
Details
Boot mode configuration
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 121
SPI ECSPI-2 ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO,
ECSPI2_SS0, ENET1_RX_CTL, ENET1_RXC,
ENET1_TD0
The chip-select pin used depends
on the fuse "CS select (SPI only)"
SPI ECSPI-3 SAI2_TXFS, SAI2_TXC, SAI2_RXD, SAI2_TXD,
SD1_DATA3, SD2_CD_B, SD2_WP
The chip-select pin used depends
on the fuse "CS select (SPI only)"
SPI ECSPI-4 SD1_CD_B, SD1_WP, SD1_RESET_B, SD1_CLK,
SD1_CMD, SD1_DATA0, SD1_DATA1
The chip-select pin used depends
on the fuse "CS select (SPI only)"
EIM EIM EPDC_SDCE2, EPDC_SDCE3, EPDC_GDCLK,
EPDC_GDOE, EPDC_GDRL, EPDC_GDSP,
EPDC_BDR0, LCD_DAT20, LCD_DAT21, LCD_DAT22,
LCD_DAT23, EPDC_D8, EPDC_D9, EPDC_D10,
EPDC_D12, EPDC_D14, EPDC_PWRSTAT
Used for NOR, OneNAND boot
Only CS0 is supported. Allocated
pads may differ depending on mux
mode. See the “System Boot,
Fusemap, and eFuse” chapter of
the
i.MX 7Dual Application
Processor Reference Manual
(IMX7DRM) for details.
NAND Flash GPMI SD3_CLK, SD3_CMD, SD3_DATA0, SD3_DATA1,
SD3_DATA2, SD3_DATA3, SD3_DATA4, SD3_DATA5,
SD3_DATA6, SD3_DATA7, SD3_STROBE,
SD3_RESET_B, SAI1_TXC, SAI1_TXFS, SAI1_TXD
8 bit
Only CS0 is supported
SD/MMC USDHC-1 SD1_CD_B, SD1_RESET_B, SD1_CLK, SD1_CMD,
SD1_DATA0, SD1_DATA1, SD1_DATA2, SD1_DATA3,
GPIO1_IO08, ECSPI2_SCLK, ECSPI2_MOSI,
ECSPI2_MISO, ECSPI2_SS0
1, 4, or 8 bit
SD/MMC USDHC-2 SD2_RESET_B, SD2_CLK, SD2_CMD, SD2_DATA0,
SD2_DATA1, SD2_DATA2, SD2_DATA3, GPIO1_IO12,
ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO,
ECSPI1_SS0
1, 4, or 8 bit
SD/MMC USDHC-3 SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1,
SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5,
SD3_DAT6, SD3_DAT7, SD3_RESET_B
1, 4, or 8 bit
USB USB-OTG
PHY
Table 97. Interface allocation during boot(continued)
Interface IP Instance Allocated Pads During Boot Comment
m mum 7mm mum. m /, WM: FALL Lee A u: v A up "3531153? ““ *Hr: um] P’xPrrm v 1 m n- m , Ll , u,
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors122
6 Package information and contact assignments
This section includes the contact assignment information and mechanical package drawing.
6.1 12 x 12 mm package information
6.1.1 Case 1997-01, 12 x 12, 0.4 mm pitch, ball matrix
The following figure shows the top, bottom, and side views of the 12×12 mm BGA package.
Figure 87. 12 x 12 mm BGA, Case x Package Top, Bottom, and Side Views
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 123
6.1.2 12 x 12 mm supplies contact assignments and functional contact
assignments
Table 98 shows supplies contact assignments for the 12 x 12 mm package.
Table 98. i.MX 7Dual 12 x 12 mm supplies contact assignments
Rail Ball Comments
DRAM_VREF T20 DDR voltage reference input. Connect to a
voltage source that is 50% of NVCC_DRAM
DRAM_ZQPAD Y18 DDR output buffer driver calibration reference
voltage input. Connect DRAM_ZQPAD to an
external 240
Ω
1% resistor to Vss
FUSE_FSOURCE V09
GND A01,A28,B05,B23,B26,C03,C05,C07,C10,C1
3,C14,C15,C23,C24,C25,C26,D08,
D12,D17,D21,E03,E05,E24,E26,F08,F10,F12
,F14,F15,F17,F21,H04,H06,H23,H25,L13,L16
,M04,M06,M23,M25,N11,N18,T11,T18,U04,U
06,U23,U25,V13,V16,W03,W06,AA04,AA06,
AA23,AA25,AC08,AC10,AC12,AC14,AC15,A
C17,AC21,AD03,AD05,AD06,AD24,AD26,AE
06,AE07,AE08,AE09,AE17,AE21,AF03,AF05,
AF08,AF09,AF10,AF11,AF13,AF14,AF15,AF2
4,AF26,AG10,AH01,AH28
GPANAIO AF02 Test signal. Should be left unconnected.
MIPI_VREG_0P4V B19
NVCC_DRAM V27,V28,W21,W23,W26,Y20,AA19,AC19,AF
17,AF18,AF19,AG18,AH18
Supply input for the DDR I/O interface
NVCC_DRAM_CKE V20
NVCC_ENET1 J18 Supply input for the ENET interfaces
NVCC_EPDC1 P20 Supply for EPDC
NVCC_EPDC2 N20 Supply for EPDC
NVCC_GPIO1 Y09 Supply for GPIO1
NVCC_GPIO2 Y11 Supply for GPIO2
NVCC_I2C R09 Supply for I2C
NVCC_LCD L20 Supply for LCD
NVCC_SAI J13 Supply for SAI
NVCC_SD1 J11 Supply for SD card
NVCC_SD2 L09 Supply for SD card
NVCC_SD3 N09 Supply for SD card
NVCC_SPI P09 Supply for SPI
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors124
NVCC_UART T09 Supply for UART
PCIE_VP AB13 Supply input for the PCIe PHY
PCIE_VPH Y15 Supply input for the PCIe PHY
PVCC_ENET_CAP G16 Secondary supply for ENET. Requires external
capacitor
PVCC_EPDC_LCD_CAP R20 Secondary supply for EPDC, LCD. Requires
external capacitor
PVCC_GPIO_CAP AB11 Secondary supply for GPIO. Requires external
capacitor
PVCC_I2C_SPI_UART_CAP W08 Secondary supply for I2C, SPI, UART.
Requires external capacitor
PVCC_SAI_SD_CAP J14 Secondary supply for SAI, SD. Requires
external capacitor
USB_OTG1_VBUS C09 VBUS input for USB_OTG1
USB_OTG2_VBUS C11 VBUS input for USB_OTG2
VDD_1P2_CAP AA10 Supply for HSIC
VDD_ARM A20,B20,C16,C17,C18,C19,C20,C21,C22,F1
9,H19,J20,K21,K23,K26,L27,L28
Supply voltage for Arm
VDD_LPSR_1P0_CAP AG06 Secondary supply for LPSR. Requires external
capacitor
VDD_LPSR_IN AG05 Supply to LPSR
VDD_MIPI_1P0 J16 Supply for MIPI
VDD_SNVS_1P8_CAP AG07 Secondary supply for SNVS. Requires external
capacitor
VDD_SNVS_IN Y13 Supply for SNVS
VDD_SOC H10,J09,K03,K06,K08,L01,L02,L11,L18,N13,
N16,P03,P06,P23,P26,R26,T13,T16,V11,V18
,R03,R06,R23
Supply for SOC
VDD_TEMPSENSOR_1P8 AH05 Supply for temp sensor
VDD_USB_H_1P2 C12,G13 Supply input for the USB HSIC interface
VDD_USB_OTG1_1P0_CAP E09 Secondary supply for OTG1. Requires external
capacitor
VDD_USB_OTG1_3P3_IN D09 Secondary supply for OTG1. Requires external
capacitor
VDD_USB_OTG2_1P0_CAP F09 Secondary supply for OTG2. Requires external
capacitor
VDD_USB_OTG2_3P3_IN D11 Secondary supply for OTG2. Requires external
capacitor
Table 98. i.MX 7Dual 12 x 12 mm supplies contact assignments(continued)
Rail Ball Comments
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 125
Table 99 shows an alpha-sorted list of functional contact assignments for the 12 x 12 mm package.
VDD_XTAL_1P8 AH02
VDDA_1P0_CAP AH07 Secondary supply for 1.0V. Requires external
capacitor
VDDA_1P8_IN AF04,AG03,AG04 Supply for 1.8V
VDDA_ADC1_1P8 AH04 Supply for ADC
VDDA_MIPI_1P8 J15 Supply for MIPI
VDDA_PHY_1P8 Y14
VDDD_1P0_CAP AC13,AE12,AF12 Secondary supply for 1.0V. Requires external
capacitor
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
AB07 ADC1_IN0 ADC1_VDDA_1P8 ADC1_IN0
AC07 ADC1_IN1 ADC1_VDDA_1P8 ADC1_IN1
AD07 ADC1_IN2 ADC1_VDDA_1P8 ADC1_IN2
AD09 ADC1_IN3 ADC1_VDDA_1P8 ADC1_IN3
Y01 BOOT_MODE0 NVCC_GPIO1 GPIO ALT0 BOOT_MODE0 100K PD
Y02 BOOT_MODE1 NVCC_GPIO1 GPIO ALT0 BOOT_MODE1 100K PD
AE04 CCM_CLK1_N VDDA_1P8 CCM_CLK1_N
AE03 CCM_CLK1_P VDDA_1P8 CCM_CLK1_P
AE02 CCM_CLK2 VDDA_1P8 CCM_CLK2
AC24 DRAM_ADDR00 NVCC_DRAM DDR DRAM_ADDR00
AC25 DRAM_ADDR01 NVCC_DRAM DDR DRAM_ADDR01
AC26 DRAM_ADDR02 NVCC_DRAM DDR DRAM_ADDR02
AB25 DRAM_ADDR03 NVCC_DRAM DDR DRAM_ADDR03
AB24 DRAM_ADDR04 NVCC_DRAM DDR DRAM_ADDR04
AE23 DRAM_ADDR05 NVCC_DRAM DDR DRAM_ADDR05
AF23 DRAM_ADDR06 NVCC_DRAM DDR DRAM_ADDR06
AE22 DRAM_ADDR07 NVCC_DRAM DDR DRAM_ADDR07
AD22 DRAM_ADDR08 NVCC_DRAM DDR DRAM_ADDR08
AC22 DRAM_ADDR09 NVCC_DRAM DDR DRAM_ADDR09
Table 98. i.MX 7Dual 12 x 12 mm supplies contact assignments(continued)
Rail Ball Comments
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors126
AD23 DRAM_ADDR10 NVCC_DRAM DDR DRAM_ADDR10
AG27 DRAM_ADDR11 NVCC_DRAM DDR DRAM_ADDR11
AE27 DRAM_ADDR12 NVCC_DRAM DDR DRAM_ADDR12
AG28 DRAM_ADDR13 NVCC_DRAM DDR DRAM_ADDR13
AE20 DRAM_ADDR14 NVCC_DRAM DDR DRAM_ADDR14
AG26 DRAM_ADDR15 NVCC_DRAM DDR DRAM_ADDR15
AG25 DRAM_CAS_B NVCC_DRAM DDR DRAM_CAS_B
AE26 DRAM_CS0_B NVCC_DRAM DDR DRAM_CS0_B
AC23 DRAM_CS1_B NVCC_DRAM DDR DRAM_CS1_B
AH22 DRAM_DATA00 NVCC_DRAM DDR DRAM_DATA00
AG19 DRAM_DATA01 NVCC_DRAM DDR DRAM_DATA01
AG20 DRAM_DATA02 NVCC_DRAM DDR DRAM_DATA02
AF22 DRAM_DATA03 NVCC_DRAM DDR DRAM_DATA03
AF20 DRAM_DATA04 NVCC_DRAM DDR DRAM_DATA04
AG22 DRAM_DATA05 NVCC_DRAM DDR DRAM_DATA05
AF21 DRAM_DATA06 NVCC_DRAM DDR DRAM_DATA06
AH20 DRAM_DATA07 NVCC_DRAM DDR DRAM_DATA07
AC18 DRAM_DATA08 NVCC_DRAM DDR DRAM_DATA08
AB18 DRAM_DATA09 NVCC_DRAM DDR DRAM_DATA09
AD16 DRAM_DATA10 NVCC_DRAM DDR DRAM_DATA10
AC16 DRAM_DATA11 NVCC_DRAM DDR DRAM_DATA11
AD18 DRAM_DATA12 NVCC_DRAM DDR DRAM_DATA12
AE18 DRAM_DATA13 NVCC_DRAM DDR DRAM_DATA13
AB16 DRAM_DATA14 NVCC_DRAM DDR DRAM_DATA14
AE16 DRAM_DATA15 NVCC_DRAM DDR DRAM_DATA15
W27 DRAM_DATA16 NVCC_DRAM DDR DRAM_DATA16
Y27 DRAM_DATA17 NVCC_DRAM DDR DRAM_DATA17
Y26 DRAM_DATA18 NVCC_DRAM DDR DRAM_DATA18
Y28 DRAM_DATA19 NVCC_DRAM DDR DRAM_DATA19
AA26 DRAM_DATA20 NVCC_DRAM DDR DRAM_DATA20
AB26 DRAM_DATA21 NVCC_DRAM DDR DRAM_DATA21
AB27 DRAM_DATA22 NVCC_DRAM DDR DRAM_DATA22
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 127
AB28 DRAM_DATA23 NVCC_DRAM DDR DRAM_DATA23
V23 DRAM_DATA24 NVCC_DRAM DDR DRAM_DATA24
V22 DRAM_DATA25 NVCC_DRAM DDR DRAM_DATA25
T23 DRAM_DATA26 NVCC_DRAM DDR DRAM_DATA26
T22 DRAM_DATA27 NVCC_DRAM DDR DRAM_DATA27
V24 DRAM_DATA28 NVCC_DRAM DDR DRAM_DATA28
V25 DRAM_DATA29 NVCC_DRAM DDR DRAM_DATA29
T25 DRAM_DATA30 NVCC_DRAM DDR DRAM_DATA30
T24 DRAM_DATA31 NVCC_DRAM DDR DRAM_DATA31
AH24 DRAM_DQM0 NVCC_DRAM DDR DRAM_DQM0
AD20 DRAM_DQM1 NVCC_DRAM DDR DRAM_DQM1
AD28 DRAM_DQM2 NVCC_DRAM DDR DRAM_DQM2
Y25 DRAM_DQM3 NVCC_DRAM DDR DRAM_DQM3
AF16 DRAM_ODT0 NVCC_DRAM DDR DRAM_ODT0
AH25 DRAM_RAS_B NVCC_DRAM DDR DRAM_RAS_B
V26 DRAM_RESET NVCC_DRAM_CKE DDR DRAM_RESET
AE28 DRAM_SDBA0 NVCC_DRAM DDR DRAM_SDBA0
AB22 DRAM_SDBA1 NVCC_DRAM DDR DRAM_SDBA1
AF27 DRAM_SDBA2 NVCC_DRAM DDR DRAM_SDBA2
Y22 DRAM_SDCKE0 NVCC_DRAM_CKE DDR DRAM_SDCKE0
AB23 DRAM_SDCKE1 NVCC_DRAM_CKE DDR DRAM_SDCKE1
AF25 DRAM_SDCLK0_N NVCC_DRAM DDRCLK DRAM_SDCLK0_N
AE25 DRAM_SDCLK0_P NVCC_DRAM DDRCLK DRAM_SDCLK0_P
AG23 DRAM_SDQS0_N NVCC_DRAM DDRCLK DRAM_SDQS0_N
AG24 DRAM_SDQS0_P NVCC_DRAM DDRCLK DRAM_SDQS0_P
AC20 DRAM_SDQS1_N NVCC_DRAM DDRCLK DRAM_SDQS1_N
AB20 DRAM_SDQS1_P NVCC_DRAM DDRCLK DRAM_SDQS1_P
AD27 DRAM_SDQS2_N NVCC_DRAM DDRCLK DRAM_SDQS2_N
AC27 DRAM_SDQS2_P NVCC_DRAM DDRCLK DRAM_SDQS2_P
Y24 DRAM_SDQS3_N NVCC_DRAM DDRCLK DRAM_SDQS3_N
Y23 DRAM_SDQS3_P NVCC_DRAM DDRCLK DRAM_SDQS3_P
AH27 DRAM_SDWE_B NVCC_DRAM DDR DRAM_SDWE_B
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors128
M03 ECSPI1_MISO NVCC_SPI GPIO ALT5 GPIO4_IO[18] 100K PD
L03 ECSPI1_MOSI NVCC_SPI GPIO ALT5 GPIO4_IO[17] 100K PD
K02 ECSPI1_SCLK NVCC_SPI GPIO ALT5 GPIO4_IO[16] 100K PD
N03 ECSPI1_SS0 NVCC_SPI GPIO ALT5 GPIO4_IO[19] 100K PD
P02 ECSPI2_MISO NVCC_SPI GPIO ALT5 GPIO4_IO[22] 100K PD
N02 ECSPI2_MOSI NVCC_SPI GPIO ALT5 GPIO4_IO[21] 100K PD
N01 ECSPI2_SCLK NVCC_SPI GPIO ALT5 GPIO4_IO[20] 100K PD
R02 ECSPI2_SS0 NVCC_SPI GPIO ALT5 GPIO4_IO[23] 100K PD
G18 ENET1_COL NVCC_ENET1 GPIO ALT5 GPIO7_IO[15] 100K PD
F18 ENET1_CRS NVCC_ENET1 GPIO ALT5 GPIO7_IO[14] 100K PD
F07 ENET1_RD0 NVCC_ENET1 GPIO ALT5 GPIO7_IO[0] 100K PD
E07 ENET1_RD1 NVCC_ENET1 GPIO ALT5 GPIO7_IO[1] 100K PD
D07 ENET1_RD2 NVCC_ENET1 GPIO ALT5 GPIO_IO[2] 100K PD
D16 ENET1_RD3 NVCC_ENET1 GPIO ALT5 GPIO7_IO[3] 100K PD
C06 ENET1_RX_CLK NVCC_ENET1 GPIO ALT5 GPIO7_IO[13] 100K PD
E11 ENET1_RX_CTL NVCC_ENET1 GPIO ALT5 GPIO7_IO[4] 100K PD
F11 ENET1_RXC NVCC_ENET1 GPIO ALT5 GPIO7_IO[5] 100K PD
E13 ENET1_TD0 NVCC_ENET1 GPIO ALT5 GPIO7_IO[6] 100K PD
D13 ENET1_TD1 NVCC_ENET1 GPIO ALT5 GPIO_IO[7] 100K PD
E16 ENET1_TD2 NVCC_ENET1 GPIO ALT5 GPIO7_IO[8] 100K PD
F16 ENET1_TD3 NVCC_ENET1 GPIO ALT5 GPIO7_IO[9] 100K PD
F13 ENET1_TX_CLK NVCC_ENET1 GPIO ALT5 GPIO7_IO[12] 100K PD
G11 ENET1_TX_CTL NVCC_ENET1 GPIO ALT5 GPIO7_IO[10] 100K PD
G09 ENET1_TXC NVCC_ENET1 GPIO ALT5 GPIO7_IO[11] 100K PD
L23 EPDC_BDR0 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[28] 100K PD
L22 EPDC_BDR1 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[29] 100K PD
T27 EPDC_D00 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[0] 100K PD
U26 EPDC_D01 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[1] 100K PD
T26 EPDC_D02 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[2] 100K PD
R27 EPDC_D03 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[3] 100K PD
N23 EPDC_D04 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[4] 100K PD
T28 EPDC_D05 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[5] 100K PD
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 129
P27 EPDC_D06 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[6] 100K PD
N28 EPDC_D07 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[7] 100K PD
N27 EPDC_D08 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[8] 100K PD
N26 EPDC_D09 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[9] 100K PD
N25 EPDC_D10 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[10] 100K PD
N24 EPDC_D11 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[11] 100K PD
M26 EPDC_D12 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[12] 100K PD
L26 EPDC_D13 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[13] 100K PD
L25 EPDC_D14 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[14] 100K PD
N22 EPDC_D15 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[15] 100K PD
J23 EPDC_GDCLK NVCC_EPDC2 GPIO ALT5 GPIO2_IO[24] 100K PD
J22 EPDC_GDOE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[25] 100K PD
L24 EPDC_GDRL NVCC_EPDC2 GPIO ALT5 GPIO2_IO[26] 100K PD
K27 EPDC_GDSP NVCC_EPDC2 GPIO ALT5 GPIO2_IO[27] 100K PD
J27 EPDC_PWRCOM NVCC_EPDC2 GPIO ALT5 GPIO2_IO[30] 100K PD
J26 EPDC_PWRSTAT NVCC_EPDC2 GPIO ALT5 GPIO2_IO[31] 100K PD
J25 EPDC_SDCE0 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[20] 100K PD
J24 EPDC_SDCE1 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[21] 100K PD
G22 EPDC_SDCE2 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[22] 100K PD
G23 EPDC_SDCE3 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[23] 100K PD
G24 EPDC_SDCLK NVCC_EPDC2 GPIO ALT5 GPIO2_IO[16] 100K PD
J28 EPDC_SDLE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[17] 100K PD
G25 EPDC_SDOE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[18] 100K PD
F26 EPDC_SDSHR NVCC_EPDC2 GPIO ALT5 GPIO2_IO[19] 100K PD
AF02 GPANAIO VDDA_1P8 GPIO GPANAIO
V04 GPIO1_IO00 NVCC_GPIO1 GPIO ALT0 GPIO1_IO00 100K PU
V05 GPIO1_IO01 NVCC_GPIO1 GPIO ALT0 GPIO1_IO01 100K PD
Y07 GPIO1_IO02 NVCC_GPIO1 GPIO ALT0 GPIO1_IO02 100K PD
Y06 GPIO1_IO03 NVCC_GPIO1 GPIO ALT0 GPIO1_IO03 100K PD
Y05 GPIO1_IO04 NVCC_GPIO1 GPIO ALT0 GPIO1_IO04 100K PD
Y04 GPIO1_IO05 NVCC_GPIO1 GPIO ALT0 GPIO1_IO05 100K PD
V06 GPIO1_IO06 NVCC_GPIO1 GPIO ALT0 GPIO1_IO06 100K PD
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors130
V07 GPIO1_IO07 NVCC_GPIO1 GPIO ALT0 GPIO1_IO07 100K PD
AB03 GPIO1_IO08 NVCC_GPIO2 GPIO ALT0 GPIO1_IO08 100K PD
AB04 GPIO1_IO09 NVCC_GPIO2 GPIO ALT0 GPIO1_IO09 100K PD
AB05 GPIO1_IO10 NVCC_GPIO2 GPIO ALT0 GPIO1_IO10 100K PD
AB06 GPIO1_IO11 NVCC_GPIO2 GPIO ALT0 GPIO1_IO11 100K PD
AC06 GPIO1_IO12 NVCC_GPIO2 GPIO ALT0 GPIO1_IO12 100K PD
AC05 GPIO1_IO13 NVCC_GPIO2 GPIO ALT0 GPIO1_IO13 100K PD
AC04 GPIO1_IO14 NVCC_GPIO2 GPIO ALT0 GPIO1_IO14 100K PD
AC03 GPIO1_IO15 NVCC_GPIO2 GPIO ALT0 GPIO1_IO15 100K PD
N04 I2C1_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[8] 100K PD
N05 I2C1_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[9] 100K PD
N06 I2C2_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[10] 100K PD
N07 I2C2_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[11] 100K PD
T06 I2C3_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[12] 100K PD
T07 I2C3_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[13] 100K PD
T05 I2C4_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[14] 100K PD
T04 I2C4_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[15] 100K PD
AB01 JTAG_MOD NVCC_GPIO2 GPIO ALT0 JTAG_MOD 100K PU
AD01 JTAG_TCK NVCC_GPIO2 GPIO ALT0 JTAG_TCK 47K PU
AC02 JTAG_TDI NVCC_GPIO2 GPIO ALT0 JTAG_TDI 47K PU
AE01 JTAG_TDO NVCC_GPIO2 GPIO ALT0 JTAG_TDO 100K PU
AD02 JTAG_TMS NVCC_GPIO2 GPIO ALT0 JTAG_TMS 47K PU
AB02 JTAG_TRST_B NVCC_GPIO2 GPIO ALT0 JTAG_TRST_B 47K PU
D20 LCD_CLK NVCC_LCD GPIO ALT5 GPIO3_IO[0] 100K PD
F22 LCD_DATA00 NVCC_LCD GPIO ALT5 GPIO3_IO[5] 100K PD
F23 LCD_DATA01 NVCC_LCD GPIO ALT5 GPIO3_IO[6] 100K PD
E23 LCD_DATA02 NVCC_LCD GPIO ALT5 GPIO3_IO[7] 100K PD
E22 LCD_DATA03 NVCC_LCD GPIO ALT5 GPIO3_IO[8] 100K PD
D22 LCD_DATA04 NVCC_LCD GPIO ALT5 GPIO3_IO[9] 100K PD
D23 LCD_DATA05 NVCC_LCD GPIO ALT5 GPIO3_IO[10] 100K PD
E18 LCD_DATA06 NVCC_LCD GPIO ALT5 GPIO3_IO[11] 100K PD
D18 LCD_DATA07 NVCC_LCD GPIO ALT5 GPIO3_IO[12] 100K PD
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 131
F20 LCD_DATA08 NVCC_LCD GPIO ALT5 GPIO3_IO[13] 100K PD
G20 LCD_DATA09 NVCC_LCD GPIO ALT5 GPIO3_IO[14] 100K PD
A27 LCD_DATA10 NVCC_LCD GPIO ALT5 GPIO3_IO[15] 100K PD
E27 LCD_DATA11 NVCC_LCD GPIO ALT5 GPIO3_IO[16] 100K PD
F27 LCD_DATA12 NVCC_LCD GPIO ALT5 GPIO3_IO[17] 100K PD
E28 LCD_DATA13 NVCC_LCD GPIO ALT5 GPIO3_IO[18] 100K PD
G27 LCD_DATA14 NVCC_LCD GPIO ALT5 GPIO3_IO[19] 100K PD
B28 LCD_DATA15 NVCC_LCD GPIO ALT5 GPIO3_IO[20] 100K PD
C27 LCD_DATA16 NVCC_LCD GPIO ALT5 GPIO3_IO[21] 100K PD
D26 LCD_DATA17 NVCC_LCD GPIO ALT5 GPIO3_IO[22] 100K PD
D27 LCD_DATA18 NVCC_LCD GPIO ALT5 GPIO3_IO[23] 100K PD
D28 LCD_DATA19 NVCC_LCD GPIO ALT5 GPIO3_IO[24] 100K PD
G26 LCD_DATA20 NVCC_LCD GPIO ALT5 GPIO3_IO[25] 100K PD
H26 LCD_DATA21 NVCC_LCD GPIO ALT5 GPIO3_IO[26] 100K PD
B27 LCD_DATA22 NVCC_LCD GPIO ALT5 GPIO3_IO[27] 100K PD
D25 LCD_DATA23 NVCC_LCD GPIO ALT5 GPIO3_IO[28] 100K PD
G28 LCD_ENABLE NVCC_LCD GPIO ALT5 GPIO3_IO[1] 100K PD
F25 LCD_HSYNC NVCC_LCD GPIO ALT5 GPIO3_IO[2] 100K PD
E20 LCD_RESET NVCC_LCD GPIO ALT5 GPIO3_IO[4] 100K PD
F24 LCD_VSYNC NVCC_LCD GPIO ALT5 GPIO3_IO[3] 100K PD
B16 MIPI_CSI_CLK_N MIPI_VDDA_1P8 MIPI_CSI_CLK_N
A16 MIPI_CSI_CLK_P MIPI_VDDA_1P8 MIPI_CSI_CLK_P
B18 MIPI_CSI_D0_N MIPI_VDDA_1P8 MIPI_CSI_D0_N
A18 MIPI_CSI_D0_P MIPI_VDDA_1P8 MIPI_CSI_D0_P
B15 MIPI_CSI_D1_N MIPI_VDDA_1P8 MIPI_CSI_D1_N
B14 MIPI_CSI_D1_P MIPI_VDDA_1P8 MIPI_CSI_D1_P
B24 MIPI_DSI_CLK_N MIPI_VDDA_1P8 MIPI_DSI_CLK_N
A24 MIPI_DSI_CLK_P MIPI_VDDA_1P8 MIPI_DSI_CLK_P
B25 MIPI_DSI_D0_N MIPI_VDDA_1P8 MIPI_DSI_D0_N
A25 MIPI_DSI_D0_P MIPI_VDDA_1P8 MIPI_DSI_D0_P
A22 MIPI_DSI_D1_N MIPI_VDDA_1P8 MIPI_DSI_D1_N
B22 MIPI_DSI_D1_P MIPI_VDDA_1P8 MIPI_DSI_D1_P
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors132
AD13 ONOFF VDD_SNVS_IN ONOFF
AG13 PCIE_REFCLKIN_N PCIE_VPH PCIE_REFCLKIN_N
AH13 PCIE_REFCLKIN_P PCIE_VPH PCIE_REFCLKIN_P
AG11 PCIE_REFCLKOUT_N PCIE_VPH PCIE_REFCLKOUT_N
AH11 PCIE_REFCLKOUT_P PCIE_VPH PCIE_REFCLKOUT_P
Y16 PCIE_REXT PCIE_VPH PCIE_REXT
AG16 PCIE_RX_N PCIE_VPH_RX PCIE_RX_N
AH16 PCIE_RX_P PCIE_VPH_RX PCIE_RX_P
AG14 PCIE_TX_N PCIE_VPH_TX PCIE_TX_N
AG15 PCIE_TX_P PCIE_VPH_TX PCIE_TX_P
AD11 CCM_PMIC_STBY_REQ VDD_SNVS_IN GPIO CCM_PMIC_STBY_REQ
Y03 POR_B NVCC_GPIO1 GPIO ALT0 POR_B 100K PU
AG09 RTC_XTALI VDD_SNVS_1P8_CAP RTC_XTALI
AH09 RTC_XTALO VDD_SNVS_1P8_CAP RTC_XTALO
D03 SAI1_MCLK NVCC_SAI GPIO ALT5 GPIO6_IO[18] 100K PD
G04 SAI1_RXC NVCC_SAI GPIO ALT5 GPIO6_IO[17] 100K PD
F03 SAI1_RXD NVCC_SAI GPIO ALT5 GPIO6_IO[12] 100K PD
C04 SAI1_RXFS NVCC_SAI GPIO ALT5 GPIO6_IO[16] 100K PD
F04 SAI1_TXC NVCC_SAI GPIO ALT5 GPIO6_IO[13] 100K PD
G05 SAI1_TXD NVCC_SAI GPIO ALT5 GPIO6_IO[15] 100K PD
F05 SAI1_TXFS NVCC_SAI GPIO ALT5 GPIO6_IO[14] 100K PD
E06 SAI2_RXD NVCC_SAI GPIO ALT5 GPIO6_IO[21] 100K PD
D04 SAI2_TXC NVCC_SAI GPIO ALT5 GPIO6_IO[20] 100K PD
D06 SAI2_TXD NVCC_SAI GPIO ALT5 GPIO6_IO[22] 100K PD
F06 SAI2_TXFS NVCC_SAI GPIO ALT5 GPIO6_IO[19] 100K PD
A05 SD1_CD_B NVCC_SD1 GPIO ALT5 GPIO5_IO[0] 100K PD
B03 SD1_CLK NVCC_SD1 GPIO ALT5 GPIO5_IO[3] 100K PD
A02 SD1_CMD NVCC_SD1 GPIO ALT5 GPIO5_IO[4] 100K PD
B04 SD1_DATA0 NVCC_SD1 GPIO ALT5 GPIO5_IO[5] 100K PD
A04 SD1_DATA1 NVCC_SD1 GPIO ALT5 GPIO5_IO[6] 100K PD
B02 SD1_DATA2 NVCC_SD1 GPIO ALT5 GPIO5_IO[7] 100K PD
B01 SD1_DATA3 NVCC_SD1 GPIO ALT5 GPIO5_IO[8] 100K PD
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 133
C02 SD1_RESET_B NVCC_SD1 GPIO ALT5 GPIO5_IO[2] 100K PD
D02 SD1_WP NVCC_SD1 GPIO ALT5 GPIO5_IO[1] 100K PD
E01 SD2_CD_B NVCC_SD2 GPIO ALT5 GPIO5_IO[9] 100K PD
G01 SD2_CLK NVCC_SD2 GPIO ALT5 GPIO5_IO[12] 100K PD
G02 SD2_CMD NVCC_SD2 GPIO ALT5 GPIO5_IO[13] 100K PD
F02 SD2_DATA0 NVCC_SD2 GPIO ALT5 GPIO5_IO[14] 100K PD
E02 SD2_DATA1 NVCC_SD2 GPIO ALT5 GPIO5_IO[15] 100K PD
H03 SD2_DATA2 NVCC_SD2 GPIO ALT5 GPIO5_IO[16] 100K PD
G03 SD2_DATA3 NVCC_SD2 GPIO ALT5 GPIO5_IO[17] 100K PD
J03 SD2_RESET_B NVCC_SD2 GPIO ALT5 GPIO5_IO[11] 100K PD
D01 SD2_WP NVCC_SD2 GPIO ALT5 GPIO5_IO[10] 100K PD
J06 SD3_CLK NVCC_SD3 GPIO ALT5 GPIO6_IO[0] 100K PD
L04 SD3_CMD NVCC_SD3 GPIO ALT5 GPIO6_IO[1] 100K PD
G06 SD3_DATA0 NVCC_SD3 GPIO ALT5 GPIO6_IO[2] 100K PD
G07 SD3_DATA1 NVCC_SD3 GPIO ALT5 GPIO6_IO[3] 100K PD
L07 SD3_DATA2 NVCC_SD3 GPIO ALT5 GPIO6_IO[4] 100K PD
L06 SD3_DATA3 NVCC_SD3 GPIO ALT5 GPIO6_IO[5] 100K PD
L05 SD3_DATA4 NVCC_SD3 GPIO ALT5 GPIO6_IO[6] 100K PD
J07 SD3_DATA5 NVCC_SD3 GPIO ALT5 GPIO6_IO[7] 100K PD
J05 SD3_DATA6 NVCC_SD3 GPIO ALT5 GPIO6_IO[8] 100K PD
J04 SD3_DATA7 NVCC_SD3 GPIO ALT5 GPIO6_IO[9] 100K PD
J02 SD3_RESET_B NVCC_SD3 GPIO ALT5 GPIO6_IO[11] 100K PD
J01 SD3_STROBE NVCC_SD3 GPIO ALT5 GPIO6_IO[10] 100K PD
AE13 SNVS_PMIC_ON_REQ VDD_SNVS_IN SNVS_PMIC_ON_REQ
AE11 SNVS_TAMPER0 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER0
AC11 SNVS_TAMPER1 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER1
AC09 SNVS_TAMPER2 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER2
AB09 SNVS_TAMPER9 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER9
AF06 TEMPSENSOR_RESERVE VDD_TEMPSENSOR_1P8
AF07 TEMPSENSOR_REXT VDD_TEMPSENSOR_1P8 TEMPSENSOR_REXT
AA03 TEST_MODE NVCC_GPIO1 GPIO ALT0 TEST_MODE 100K PD
T01 UART1_RXD NVCC_UART GPIO ALT5 GPIO4_IO[0] 100K PD
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors134
V01 UART1_TXD NVCC_UART GPIO ALT5 GPIO4_IO[1] 100K PD
T02 UART2_RXD NVCC_UART GPIO ALT5 GPIO4_IO[2] 100K PD
T03 UART2_TXD NVCC_UART GPIO ALT5 GPIO4_IO[3] 100K PD
V03 UART3_CTS NVCC_UART GPIO ALT5 GPIO4_IO[7] 100K PD
W02 UART3_RTS NVCC_UART GPIO ALT5 GPIO4_IO[6] 100K PD
V02 UART3_RXD NVCC_UART GPIO ALT5 GPIO4_IO[4] 100K PD
U03 UART3_TXD NVCC_UART GPIO ALT5 GPIO4_IO[5] 100K PD
A13 USB_H_DATA USB_H_VDD_1P2 USB_H_DATA
B13 USB_H_STROBE USB_H_VDD_1P2 USB_H_STROBE
B06 USB_OTG1_CHD_B USB_OTG1_VDDA_3P3 USB_OTG1_CHD_B
B07 USB_OTG1_DN USB_OTG1_VDDA_3P3 USB_OTG1_DN
A07 USB_OTG1_DP USB_OTG1_VDDA_3P3 USB_OTG1_DP
B09 USB_OTG1_ID USB_OTG1_VDDA_3P3 USB_OTG1_ID
C08 USB_OTG1_REXT USB_OTG1_VDDA_3P3 USB_OTG1_REXT
B11 USB_OTG2_DN USB_OTG2_VDDA_3P3 USB_OTG2_DN
A11 USB_OTG2_DP USB_OTG2_VDDA_3P3 USB_OTG2_DP
B10 USB_OTG2_ID USB_OTG2_VDDA_3P3 USB_OTG2_ID
A09 USB_OTG2_REXT USB_OTG2_VDDA_3P3 USB_OTG2_REXT
AG02 XTALI VDDA_1P8 XTALI
AG01 XTALO VDDA_1P8 XTALO
1
The state immediately after RESET and before ROM firmware or software has executed.
Table 99. i.MX 7Dual 12 x 12 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball type
1
Default
Mode
1
Default
Function
1
PD/PU
x7
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 135
6.1.3 i.MX 7Dual 12 x 12 mm 0.4 mm Pitch Ball Map
The following table shows the i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map.
Table 100. i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map
12345678910111213141516171819202122232425262728
A
VSS
SD1_CMD
SD1_DATA1
SD1_CD_B
USB_OTG1_DP
USB_OTG2_REXT
USB_OTG2_DP
USB_H_DATA
MIPI_CSI_CLK_P
MIPI_CSI_D0_P
VDD_ARM
MIPI_DSI_D1_N
MIPI_DSI_CLK_P
MIPI_DSI_D0_P
LCD1_DATA10
VSS
A
B
SD1_DATA3
SD1_DATA2
SD1_CLK
SD1_DATA0
VSS
USB_OTG1_CHD_B
USB_OTG1_DN
USB_OTG1_ID
USB_OTG2_ID
USB_OTG2_DN
USB_H_STROBE
MIPI_CSI_D1_P
MIPI_CSI_D1_N
MIPI_CSI_CLK_N
MIPI_CSI_D0_N
MIPI_VREG_0P4V
VDD_ARM
MIPI_DSI_D1_P
VSS
MIPI_DSI_CLK_N
MIPI_DSI_D0_N
VSS
LCD1_DATA22
LCD1_DATA15
B
C
SD1_RESET_B
VSS
SAI1_RXFS
VSS
ENET1_RX_CLK
VSS
USB_OTG1_REXT
USB_OTG1_VBUS
VSS
USB_OTG2_VBUS
VDD_USB_H_1P2
VSS
VSS
VSS
VDD_ARM
VDD_ARM
VDD_ARM
VDD_ARM
VDD_ARM
VDD_ARM
VDD_ARM
VSS
VSS
VSS
VSS
LCD1_DATA16
C
D
SD2_WP
SD1_WP
SAI1_MCLK
SAI2_TXC
SAI2_TXD
ENET1_RDATA2
VSS
VDD_USB_OTG1_3P3_IN
VDD_USB_OTG2_3P3_IN
VSS
ENET1_TDATA1
ENET1_RDATA3
VSS
LCD1_DATA07
LCD1_CLK
VSS
LCD1_DATA04
LCD1_DATA05
LCD1_DATA23
LCD1_DATA17
LCD1_DATA18
LCD1_DATA19
D
E
SD2_CD_B
SD2_DATA1
VSS
VSS
SAI2_RXD
ENET1_RDATA1
VDD_USB_OTG1_1P0_CAP
ENET1_RX_CTL
ENET1_TDATA0
ENET1_TDATA2
LCD1_DATA06
LCD1_RESET
LCD1_DATA03
LCD1_DATA02
VSS
VSS
LCD1_DATA11
LCD1_DATA13
E
F
SD2_DATA0
SAI1_RXD
SAI1_TXC
SAI1_TXFS
SAI2_TXFS
ENET1_RDATA0
VSS
VDD_USB_OTG2_1P0_CAP
VSS
ENET1_RXC
VSS
ENET1_TX_CLK
VSS
VSS
ENET1_TDATA3
VSS
ENET1_CRS
VDD_ARM
LCD1_DATA08
VSS
LCD1_DATA00
LCD1_DATA01
LCD1_VSYNC
LCD1_HSYNC
EPDC1_SDSHR
LCD1_DATA12
F
G
SD2_CLK
SD2_CMD
SD2_DATA3
SAI1_RXC
SAI1_TXD
SD3_DATA0
SD3_DATA1
ENET1_TXC
ENET1_TX_CTL
VDD_USB_H_1P2
PVCC_ENET_CAP
ENET1_COL
LCD1_DATA09
EPDC1_SDCE2
EPDC1_SDCE3
EPDC1_SDCLK
EPDC1_SDOE
LCD1_DATA20
LCD1_DATA14
LCD1_ENABLE
G
12345678910111213141516171819202122232425262728
04 07 AP
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors136
H
SD2_DATA2
VSS
VSS
VDD_SOC
VDD_ARM
VSS
VSS
LCD1_DATA21
H
J
SD3_STROBE
SD3_RESET_B
SD2_RESET_B
SD3_DATA7
SD3_DATA6
SD3_CLK
SD3_DATA5
VDD_SOC
NVCC_SD1
NVCC_SAI
PVCC_SAI_SD_CAP
VDDA_MIPI_1P8
VDD_MIPI_1P0
NVCC_ENET1
VDD_ARM
EPDC1_GDOE
EPDC1_GDCLK
EPDC1_SDCE1
EPDC1_SDCE0
EPDC1_PWRSTAT
EPDC1_PWRCOM
EPDC1_SDLE
J
K
ECSPI1_SCLK
VDD_SOC
VDD_SOC
VDD_SOC
VDD_ARM
VDD_ARM
VDD_ARM
EPDC1_GDSP
K
L
VDD_SOC
VDD_SOC
ECSPI1_MOSI
SD3_CMD
SD3_DATA4
SD3_DATA3
SD3_DATA2
NVCC_SD2
VDD_SOC
VSS
VSS
VDD_SOC
NVCC_LCD
EPDC1_BDR1
EPDC1_BDR0
EPDC1_GDRL
EPDC1_DATA14
EPDC1_DATA13
VDD_ARM
VDD_ARM
L
M
ECSPI1_MISO
VSS
VSS
VSS
VSS
EPDC1_DATA12
M
N
ECSPI2_SCLK
ECSPI2_MOSI
ECSPI1_SS0
I2C1_SCL
I2C1_SDA
I2C2_SCL
I2C2_SDA
NVCC_SD3
VSS
VDD_SOC
VDD_SOC
VSS
NVCC_EPDC2
EPDC1_DATA15
EPDC1_DATA04
EPDC1_DATA11
EPDC1_DATA10
EPDC1_DATA09
EPDC1_DATA08
EPDC1_DATA07
N
P
ECSPI2_MISO
VDD_SOC
VDD_SOC
NVCC_SPI
NVCC_EPDC1
VDD_SOC
VDD_SOC
EPDC1_DATA06
P
R
ECSPI2_SS0
VDD_SOC
VDD_SOC
NVCC_I2C
PVCC_EPDC_LCD_CAP
VDD_SOC
VDD_SOC
EPDC1_DATA03
R
T
UART1_RXD
UART2_RXD
UART2_TXD
I2C4_SDA
I2C4_SCL
I2C3_SCL
I2C3_SDA
NVCC_UART
VSS
VDD_SOC
VDD_SOC
VSS
DRAM_VREF
DRAM_DATA27
DRAM_DATA26
DRAM_DATA31
DRAM_DATA30
EPDC1_DATA02
EPDC1_DATA00
EPDC1_DATA05
T
U
UART3_TXD
VSS
VSS
VSS
VSS
EPDC1_DATA01
U
Table 100. i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map(continued)
12345678910111213141516171819202122232425262728
12345678910111213141516171819202122232425262728
EO
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 137
V
UART1_TXD
UART3_RXD
UART3_CTS
GPIO1_IO00
GPIO1_IO01
GPIO1_IO06
GPIO1_IO07
FUSE_FSOURCE
VDD_SOC
VSS
VSS
VDD_SOC
NVCC_DRAM_CKE
DRAM_DATA25
DRAM_DATA24
DRAM_DATA28
DRAM_DATA29
DRAM_RESET
NVCC_DRAM
NVCC_DRAM
V
W
UART3_RTS
VSS
VSS
PVCC_I2C_SPI_UART_CAP
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
DRAM_DATA16
W
Y
BOOT_MODE0
BOOT_MODE1
POR_B
GPIO1_IO05
GPIO1_IO04
GPIO1_IO03
GPIO1_IO02
NVCC_GPIO1
NVCC_GPIO2
VDD_SNVS_IN
VDDA_PHY_1P8
PCIE_VPH
PCIE_REXT
DRAM_ZQPAD
NVCC_DRAM
DRAM_SDCKE0
DRAM_SDQS3_P
DRAM_SDQS3_N
DRAM_DQM3
DRAM_DATA18
DRAM_DATA17
DRAM_DATA19
Y
AA
TEST_MODE
VSS
VSS
VDD_1P2_CAP
NVCC_DRAM
VSS
VSS
DRAM_DATA20
AA
AB
JTAG_MOD
JTAG_TRST_B
GPIO1_IO08
GPIO1_IO09
GPIO1_IO10
GPIO1_IO11
ADC1_IN0
SNVS_TAMPER09
PVCC_GPIO_CAP
PCIE_VP
DRAM_DATA14
DRAM_DATA09
DRAM_SDQS1_P
DRAM_SDBA1
DRAM_SDCKE1
DRAM_ADDR04
DRAM_ADDR03
DRAM_DATA21
DRAM_DATA22
DRAM_DATA23
AB
AC
JTAG_TDI
GPIO1_IO15
GPIO1_IO14
GPIO1_IO13
GPIO1_IO12
ADC1_IN1
VSS
SNVS_TAMPER02
VSS
SNVS_TAMPER01
VSS
VDDD_1P0_CAP
VSS
VSS
DRAM_DATA11
VSS
DRAM_DATA08
NVCC_DRAM
DRAM_SDQS1_N
VSS
DRAM_ADDR09
DRAM_CS1_B
DRAM_ADDR00
DRAM_ADDR01
DRAM_ADDR02
DRAM_SDQS2_P
AC
AD
JTAG_TCK
JTAG_TMS
VSS
VSS
VSS
ADC1_IN2
ADC1_IN3
PMIC_STBY_REQ
ONOFF
DRAM_DATA10
DRAM_DATA12
DRAM_DQM1
DRAM_ADDR08
DRAM_ADDR10
VSS
VSS
DRAM_SDQS2_N
DRAM_DQM2
AD
AE
JTAG_TDO
CCM_CLK2
CCM_CLK1_P
CCM_CLK1_N
VSS
VSS
VSS
VSS
SNVS_TAMPER00
VDDD_1P0_CAP
SNVS_PMIC_ON_REQ
DRAM_DATA15
VSS
DRAM_DATA13
DRAM_ADDR14
VSS
DRAM_ADDR07
DRAM_ADDR05
DRAM_SDCLK0_P
DRAM_CS0_B
DRAM_ADDR12
DRAM_SDBA0
AE
Table 100. i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map(continued)
12345678910111213141516171819202122232425262728
12345678910111213141516171819202122232425262728
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors138
AF
GPANAIO
VSS
VDDA_1P8_IN
VSS
TEMPSENSOR_RESERVE
TEMPSENSOR_REXT
VSS
VSS
VSS
VSS
VDDD_1P0_CAP
VSS
VSS
VSS
DRAM_ODT0
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
DRAM_DATA04
DRAM_DATA06
DRAM_DATA03
DRAM_ADDR06
VSS
DRAM_SDCLK0_N
VSS
DRAM_SDBA2
AF
AG
XTALO
XTALI
VDDA_1P8_IN
VDDA_1P8_IN
VDD_LPSR_IN
VDD_LPSR_1P0_CAP
VDD_SNVS_1P8_CAP
RTC_XTALI
VSS
PCIE_REFCLKOUT_N
PCIE_REFCLKIN_N
PCIE_TX_N
PCIE_TX_P
PCIE_RX_N
NVCC_DRAM
DRAM_DATA01
DRAM_DATA02
DRAM_DATA05
DRAM_SDQS0_N
DRAM_SDQS0_P
DRAM_CAS_B
DRAM_ADDR15
DRAM_ADDR11
DRAM_ADDR13
AG
AH
VSS
VDD_XTAL_1P8
VDDA_ADC1_1P8
VDD_TEMPSENSOR_1P8
VDDA_1P0_CAP
RTC_XTALO
PCIE_REFCLKOUT_P
PCIE_REFCLKIN_P
PCIE_RX_P
NVCC_DRAM
DRAM_DATA07
DRAM_DATA00
DRAM_DQM0
DRAM_RAS_B
DRAM_SDWE_B
VSS
AH
Table 100. i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map(continued)
12345678910111213141516171819202122232425262728
12345678910111213141516171819202122232425262728
m m} x w: DE mac 3 mm ; 4 Jf \ V w ‘ ‘ \[ulLr ' 5 1 E F 1 1 ,* , ,,,,,,,, + ,,,,,,,, u ,,%, \ i i E i x ; 1 _ .7 m 1E \mm IE 7 _B "M rrEEIVLIEHV / “ A7 ,, m \I: ‘EI [in VB I: \[l‘li \JI: :v‘ n ‘ n K K n ”m
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 139
6.2 19 x 19 mm package information
6.2.1 Case “Y”, 19 x 19 mm, 0.75 mm pitch, ball matrix
Figure 88 shows the top, bottom, and side views of the 19×19 mm BGA package.
Figure 88. 19 x 19 mm BGA, Case x Package Top, Bottom, and Side Views
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors140
6.2.2 19 x 19 mm supplies contact assignments and functional contact
assignments
Table 101 shows supplies contact assignments for the 19 x 19 mm package.
Table 101. i.MX 7Dual 19 x 19 mm supplies contact assignments
Rail Pins Comments
ADC2_VDDA_1P8 AB03
DRAM_VREF AC13
DRAM_ZQPAD AB13 DDR output buffer driver calibration reference
voltage input. Connect DRAM_ZQPAD to an
external 240
Ω
1% resistor to Vss
FUSE_FSOURCE0 V08
GND A01,A03,A06,A09,A13,A17,A21,A25,B03,B06
,B09,B13,B17,B21,C09,C13,C15,C16,C18,C1
9,D01,D02,D04,D07,D10,D22,F07,F08,F11,F
13,G07,G04,G09,G11,G13,G15,G17,G19,G2
2,H01,H02,J07,J19,K04,K10,K12,K14,K16,K2
2,L07,L11,L13,L15,L19,M10,M12,M14,M16,M
24,M25,N04,N07,N11,N13,N15,N19,P10,P12,
P14,P16,R07,R11,R13,R15,R19,R20,R21,R2
3,T04,T10,T12,T14,T16,T20,U07,U11,U19,U2
0,U23,V20,W01,W02,W04,W07,W09,W11,W1
3,W15,W17,W19,W20,W23,Y06,Y13,Y14,Y15
,Y16,Y17,Y18,Y19,AA01,AA02,AA06,AA08,A
A15,AA23,AB04,AB05,AB07,AB09,AB12,AC0
6,AC09,AC12,AC15,AC17,AC19,AC21,AC23,
AD02,AD07,AD09,AD12,AE01,AE05,AE07,A
E09,AE12,AE24,AE25, AD05
Ground
GPANIO V04 Test signal. Should be left unconnected.
MIPI_VREG_0P4V H18
NVCC_DRAM T21,U21,V21,W21,Y21,AA16,AA17,AA18,AA
19,AA20,AA21
NVCC_DRAM_CKE Y20
NVCC_ENET1 H16 Supply for ENET interface
NVCC_EPDC1 M18 Supply for EPDC interface
NVCC_EPDC2 L17 Supply for EPDC interface
NVCC_GPIO1 P08 Supply for GPIO1 interface
NVCC_GPIO2 T08 Supply for GPIO2 interface
NVCC_I2C M08 Supply for I2C interface
NVCC_LCD K18 Supply for LCD interface
NVCC_SAI F12 Supply for SAI interface
NVCC_SD1 E07 Supply for SD card interface
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 141
NVCC_SD2 H08 Supply for SD card interface
NVCC_SD3 K08 Supply for SD card interface
NVCC_SPI L09 Supply for SPI interface
NVCC_UART N09 Supply for UART interface
PCIE_VP AA10 Supply for PCIe' interface
PCIE_VP_RX AA12 Supply for PCIe PHY
PCIE_VP_TX AA11 Supply for PCIe PHY
PCIE_VPH Y10
PCIE_VPH_RX Y12
PCIE_VPH_TX Y11
PVCC_ENET_CAP H14 Secondary supply for ENET (internal regulator
output). Requires external capacitors
PVCC_EPDC_LCD_CAP N17 Secondary supply for EPDC_LCD (internal
regulator output). Requires external capacitors
PVCC_GPIO_CAP V10 Secondary supply for GPIO (internal regulator
output). Requires external capacitors
PVCC_I2C_SPI_UART_CAP R09 Secondary supply for I2C_SPI_UART (internal
regulator output). Requires external capacitors
PVCC_SAI_SD_CAP J09 Secondary supply for SAI_SD (internal
regulator output). Requires external capacitors
USB_OTG1_VBUS C08
USB_OTG1_VDDA_3P3_IN F10
USB_OTG2_VBUS C10
USB_OTG2_VDDA_3P3_IN F09
VDD_1P2_CAP U09 Supply for HSIC
VDD_ARM C17,C20,D17,D20,F22,F23,J22,J23 Supply for Arm
VDD_LPSR_1P0_CAP AC05 Secondary supply for LPSR (internal regulator
output). Requires external capacitors
VDD_LPSR_IN W06 Supply for LPSR
VDD_SNVS_1P8_CAP AE08 Secondary supply for SNVS (internal regulator
output). Requires external capacitors
VDD_SNVS_IN AD08 Primary supply for the SNVS regulator
VDD_SOC C14,D14,F03,F04,F18,F19,J03,J04,M03,M04,
P18,R03,R04,R17,T18,U13,U15,U17,V12,V1
4,V16,V18
Supply for SOC
VDD_TEMPSENSOR_1P8 AC04 Supply for VDDe PHY
Table 101. i.MX 7Dual 19 x 19 mm supplies contact assignments(continued)
Rail Pins Comments
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors142
Table 102 shows an alpha-sorted list of functional contact assignments for the 19 x 19 mm package.
VDD_USB_H_1P2 H12 Supply input for the USB HSIC Interface
VDD_USB_OTG1_1P0_CAP H10 Secondary supply for USB OTG (internal
regulator output). Requires external capacitors
VDD_USB_OTG2_1P0_CAP J11 Secondary supply for USB OTG (internal
regulator output). Requires external capacitors
VDD_XTAL_1P8 V05
VDDA_1P0_CAP V03 Secondary supply for 1P0 (internal regulator
output). Requires external capacitors
VDDA_1P8_IN V06,W05
VDDA_ADC1_1P8 AC03 Supply for ADC
VDDA_PHY_1P8 Y09
VDDD_1P0_CAP AA09 Secondary supply for 1P0 (internal regulator
output). Requires external capacitors
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
AD01 ADC1_IN0 ADC1_VDDA_1P8 ADC1_IN0
AD03 ADC1_IN1 ADC1_VDDA_1P8 ADC1_IN1
AE02 ADC1_IN2 ADC1_VDDA_1P8 ADC1_IN2
AE03 ADC1_IN3 ADC1_VDDA_1P8 ADC1_IN3
AC01 ADC2_IN0 ADC2_VDDA_1P8 ADC2_IN0
AC02 ADC2_IN1 ADC2_VDDA_1P8 ADC2_IN1
AB01 ADC2_IN2 ADC2_VDDA_1P8 ADC2_IN2
AB02 ADC2_IN3 ADC2_VDDA_1P8 ADC2_IN3
P04 BOOT_MODE0 NVCC_GPIO1 GPIO ALT0 BOOT_MODE0 100K PD
P05 BOOT_MODE1 NVCC_GPIO1 GPIO ALT0 BOOT_MODE1 100K PD
Y01 CCM_CLK1_N VDDA_1P8 CCM_CLK1_N
Y02 CCM_CLK1_P VDDA_1P8 CCM_CLK1_P
W03 CCM_CLK2 VDDA_1P8 CCM_CLK2
AC07 CCM_PMIC_STBY_REQ VDD_SNVS_IN CCM_PMIC_STBY_REQ
AB19 DRAM_ADDR00 NVCC_DRAM DDR DRAM_ADDR00
AB16 DRAM_ADDR01 NVCC_DRAM DDR DRAM_ADDR01
Table 101. i.MX 7Dual 19 x 19 mm supplies contact assignments(continued)
Rail Pins Comments
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 143
AC18 DRAM_ADDR02 NVCC_DRAM DDR DRAM_ADDR02
AC20 DRAM_ADDR03 NVCC_DRAM DDR DRAM_ADDR03
AB21 DRAM_ADDR04 NVCC_DRAM DDR DRAM_ADDR04
Y23 DRAM_ADDR05 NVCC_DRAM DDR DRAM_ADDR05
V22 DRAM_ADDR06 NVCC_DRAM DDR DRAM_ADDR06
Y22 DRAM_ADDR07 NVCC_DRAM DDR DRAM_ADDR07
W22 DRAM_ADDR08 NVCC_DRAM DDR DRAM_ADDR08
V23 DRAM_ADDR09 NVCC_DRAM DDR DRAM_ADDR09
T23 DRAM_ADDR10 NVCC_DRAM DDR DRAM_ADDR10
U22 DRAM_ADDR11 NVCC_DRAM DDR DRAM_ADDR11
T22 DRAM_ADDR12 NVCC_DRAM DDR DRAM_ADDR12
P23 DRAM_ADDR13 NVCC_DRAM DDR DRAM_ADDR13
AB18 DRAM_ADDR14 NVCC_DRAM DDR DRAM_ADDR14
AB20 DRAM_ADDR15 NVCC_DRAM DDR DRAM_ADDR15
AC14 DRAM_CAS_B NVCC_DRAM DDR DRAM_CAS_B
AB23 DRAM_CS0_B NVCC_DRAM DDR DRAM_CS0_B
AA22 DRAM_CS1_B NVCC_DRAM DDR DRAM_CS1_B
AD22 DRAM_DATA00 NVCC_DRAM DDR DRAM_DATA00
AD23 DRAM_DATA01 NVCC_DRAM DDR DRAM_DATA01
AE20 DRAM_DATA02 NVCC_DRAM DDR DRAM_DATA02
AE23 DRAM_DATA03 NVCC_DRAM DDR DRAM_DATA03
AE22 DRAM_DATA04 NVCC_DRAM DDR DRAM_DATA04
AD19 DRAM_DATA05 NVCC_DRAM DDR DRAM_DATA05
AD18 DRAM_DATA06 NVCC_DRAM DDR DRAM_DATA06
AE19 DRAM_DATA07 NVCC_DRAM DDR DRAM_DATA07
AE14 DRAM_DATA08 NVCC_DRAM DDR DRAM_DATA08
AE18 DRAM_DATA09 NVCC_DRAM DDR DRAM_DATA09
AE17 DRAM_DATA10 NVCC_DRAM DDR DRAM_DATA10
AD16 DRAM_DATA11 NVCC_DRAM DDR DRAM_DATA11
AE16 DRAM_DATA12 NVCC_DRAM DDR DRAM_DATA12
AD14 DRAM_DATA13 NVCC_DRAM DDR DRAM_DATA13
AD13 DRAM_DATA14 NVCC_DRAM DDR DRAM_DATA14
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors144
AE13 DRAM_DATA15 NVCC_DRAM DDR DRAM_DATA15
AA25 DRAM_DATA16 NVCC_DRAM DDR DRAM_DATA16
W24 DRAM_DATA17 NVCC_DRAM DDR DRAM_DATA17
V25 DRAM_DATA18 NVCC_DRAM DDR DRAM_DATA18
W25 DRAM_DATA19 NVCC_DRAM DDR DRAM_DATA19
AC25 DRAM_DATA20 NVCC_DRAM DDR DRAM_DATA20
AB25 DRAM_DATA21 NVCC_DRAM DDR DRAM_DATA21
AB24 DRAM_DATA22 NVCC_DRAM DDR DRAM_DATA22
AC24 DRAM_DATA23 NVCC_DRAM DDR DRAM_DATA23
R25 DRAM_DATA24 NVCC_DRAM DDR DRAM_DATA24
N24 DRAM_DATA25 NVCC_DRAM DDR DRAM_DATA25
P25 DRAM_DATA26 NVCC_DRAM DDR DRAM_DATA26
N25 DRAM_DATA27 NVCC_DRAM DDR DRAM_DATA27
U25 DRAM_DATA28 NVCC_DRAM DDR DRAM_DATA28
R24 DRAM_DATA29 NVCC_DRAM DDR DRAM_DATA29
U24 DRAM_DATA30 NVCC_DRAM DDR DRAM_DATA30
V24 DRAM_DATA31 NVCC_DRAM DDR DRAM_DATA31
AD20 DRAM_DQM0 NVCC_DRAM DDR DRAM_DQM0
AD17 DRAM_DQM1 NVCC_DRAM DDR DRAM_DQM1
AA24 DRAM_DQM2 NVCC_DRAM DDR DRAM_DQM2
P24 DRAM_DQM3 NVCC_DRAM DDR DRAM_DQM3
AC16 DRAM_ODT0 NVCC_DRAM DDR DRAM_ODT0
AA14 DRAM_ODT1 NVCC_DRAM DDR DRAM_ODT1
AB15 DRAM_RAS_B NVCC_DRAM DDR DRAM_RAS_B
AC22 DRAM_RESET NVCC_DRAM_CKE DDR DRAM_RESET
R22 DRAM_SDBA0 NVCC_DRAM DDR DRAM_SDBA0
P22 DRAM_SDBA1 NVCC_DRAM DDR DRAM_SDBA1
N23 DRAM_SDBA2 NVCC_DRAM DDR DRAM_SDBA2
AB17 DRAM_SDCKE0 NVCC_DRAM_CKE DDR DRAM_SDCKE0
AB22 DRAM_SDCKE1 NVCC_DRAM_CKE DDR DRAM_SDCKE1
AD25 DRAM_SDCLK0_N NVCC_DRAM DDRCLK DRAM_SDCLK0_N
AD24 DRAM_SDCLK0_P NVCC_DRAM DDRCLK DRAM_SDCLK0_P
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 145
AD21 DRAM_SDQS0_N NVCC_DRAM DDRCLK DRAM_SDQS0_N
AE21 DRAM_SDQS0_P NVCC_DRAM DDRCLK DRAM_SDQS0_P
AE15 DRAM_SDQS1_N NVCC_DRAM DDRCLK DRAM_SDQS1_N
AD15 DRAM_SDQS1_P NVCC_DRAM DDRCLK DRAM_SDQS1_P
Y25 DRAM_SDQS2_N NVCC_DRAM DDRCLK DRAM_SDQS2_N
Y24 DRAM_SDQS2_P NVCC_DRAM DDRCLK DRAM_SDQS2_P
T25 DRAM_SDQS3_N NVCC_DRAM DDRCLK DRAM_SDQS3_N
T24 DRAM_SDQS3_P NVCC_DRAM DDRCLK DRAM_SDQS3_P
AB14 DRAM_SDWE_B NVCC_DRAM DDR DRAM_SDWE_B
H04 ECSPI1_MISO NVCC_SPI GPIO ALT5 GPIO4_IO[18] 100K PD
G05 ECSPI1_MOSI NVCC_SPI GPIO ALT5 GPIO4_IO[17] 100K PD
H03 ECSPI1_SCLK NVCC_SPI GPIO ALT5 GPIO4_IO[16] 100K PD
H05 ECSPI1_SS0 NVCC_SPI GPIO ALT5 GPIO4_IO[19] 100K PD
H06 ECSPI2_MISO NVCC_SPI GPIO ALT5 GPIO4_IO[22] 100K PD
G06 ECSPI2_MOSI NVCC_SPI GPIO ALT5 GPIO4_IO[21] 100K PD
J05 ECSPI2_SCLK NVCC_SPI GPIO ALT5 GPIO4_IO[20] 100K PD
J06 ECSPI2_SS0 NVCC_SPI GPIO ALT5 GPIO4_IO[23] 100K PD
D19 ENET1_COL NVCC_ENET1 GPIO ALT5 GPIO7_IO[15] 100K PD
E19 ENET1_CRS NVCC_ENET1 GPIO ALT5 GPIO7_IO[14] 100K PD
E14 ENET1_RD0 NVCC_ENET1 GPIO ALT5 GPIO7_IO[0] 100K PD
F14 ENET1_RD1 NVCC_ENET1 GPIO ALT5 GPIO7_IO[1] 100K PD
D13 ENET1_RD2 NVCC_ENET1 GPIO ALT5 GPIO_IO[2] 100K PD
E13 ENET1_RD3 NVCC_ENET1 GPIO ALT5 GPIO7_IO[3] 100K PD
D15 ENET1_RX_CLK NVCC_ENET1 GPIO ALT5 GPIO7_IO[13] 100K PD
E15 ENET1_RX_CTL NVCC_ENET1 GPIO ALT5 GPIO7_IO[4] 100K PD
F15 ENET1_RXC NVCC_ENET1 GPIO ALT5 GPIO7_IO[5] 100K PD
F17 ENET1_TD0 NVCC_ENET1 GPIO ALT5 GPIO7_IO[6] 100K PD
E17 ENET1_TD1 NVCC_ENET1 GPIO ALT5 GPIO_IO[7] 100K PD
E18 ENET1_TD2 NVCC_ENET1 GPIO ALT5 GPIO7_IO[8] 100K PD
D18 ENET1_TD3 NVCC_ENET1 GPIO ALT5 GPIO7_IO[9] 100K PD
D16 ENET1_TX_CLK NVCC_ENET1 GPIO ALT5 GPIO7_IO[12] 100K PD
E16 ENET1_TX_CTL NVCC_ENET1 GPIO ALT5 GPIO7_IO[10] 100K PD
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors146
F16 ENET1_TXC NVCC_ENET1 GPIO ALT5 GPIO7_IO[11] 100K PD
K24 EPDC_BDR0 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[28] 100K PD
K23 EPDC_BDR1 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[29] 100K PD
P20 EPDC_D00 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[0] 100K PD
P21 EPDC_D01 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[1] 100K PD
N20 EPDC_D02 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[2] 100K PD
N21 EPDC_D03 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[3] 100K PD
N22 EPDC_D04 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[4] 100K PD
M20 EPDC_D05 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[5] 100K PD
M21 EPDC_D06 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[6] 100K PD
M22 EPDC_D07 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[7] 100K PD
M23 EPDC_D08 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[8] 100K PD
L25 EPDC_D09 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[9] 100K PD
L24 EPDC_D10 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[10] 100K PD
L23 EPDC_D11 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[11] 100K PD
L22 EPDC_D12 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[12] 100K PD
L21 EPDC_D13 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[13] 100K PD
L20 EPDC_D14 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[14] 100K PD
K25 EPDC_D15 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[15] 100K PD
J25 EPDC_GDCLK NVCC_EPDC2 GPIO ALT5 GPIO2_IO[24] 100K PD
J24 EPDC_GDOE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[25] 100K PD
K21 EPDC_GDRL NVCC_EPDC2 GPIO ALT5 GPIO2_IO[26] 100K PD
H25 EPDC_GDSP NVCC_EPDC2 GPIO ALT5 GPIO2_IO[27] 100K PD
H24 EPDC_PWRCOM NVCC_EPDC2 GPIO ALT5 GPIO2_IO[30] 100K PD
K20 EPDC_PWRSTAT NVCC_EPDC2 GPIO ALT5 GPIO2_IO[31] 100K PD
G25 EPDC_SDCE0 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[20] 100K PD
G24 EPDC_SDCE1 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[21] 100K PD
H23 EPDC_SDCE2 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[22] 100K PD
H22 EPDC_SDCE3 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[23] 100K PD
J21 EPDC_SDCLK NVCC_EPDC2 GPIO ALT5 GPIO2_IO[16] 100K PD
J20 EPDC_SDLE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[17] 100K PD
H21 EPDC_SDOE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[18] 100K PD
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 147
H20 EPDC_SDSHR NVCC_EPDC2 GPIO ALT5 GPIO2_IO[19] 100K PD
N01 GPIO1_IO00 NVCC_GPIO1 GPIO ALT0 GPIO1_IO00 100K PU
N02 GPIO1_IO01 NVCC_GPIO1 GPIO ALT0 GPIO1_IO01 100K PD
N03 GPIO1_IO02 NVCC_GPIO1 GPIO ALT0 GPIO1_IO02 100K PD
N05 GPIO1_IO03 NVCC_GPIO1 GPIO ALT0 GPIO1_IO03 100K PD
N06 GPIO1_IO04 NVCC_GPIO1 GPIO ALT0 GPIO1_IO04 100K PD
P01 GPIO1_IO05 NVCC_GPIO1 GPIO ALT0 GPIO1_IO05 100K PD
P02 GPIO1_IO06 NVCC_GPIO1 GPIO ALT0 GPIO1_IO06 100K PD
P03 GPIO1_IO07 NVCC_GPIO1 GPIO ALT0 GPIO1_IO07 100K PD
R01 GPIO1_IO08 NVCC_GPIO2 GPIO ALT0 GPIO1_IO08 100K PD
R02 GPIO1_IO09 NVCC_GPIO2 GPIO ALT0 GPIO1_IO09 100K PD
R05 GPIO1_IO10 NVCC_GPIO2 GPIO ALT0 GPIO1_IO10 100K PD
T01 GPIO1_IO11 NVCC_GPIO2 GPIO ALT0 GPIO1_IO11 100K PD
T02 GPIO1_IO12 NVCC_GPIO2 GPIO ALT0 GPIO1_IO12 100K PD
T03 GPIO1_IO13 NVCC_GPIO2 GPIO ALT0 GPIO1_IO13 100K PD
T05 GPIO1_IO14 NVCC_GPIO2 GPIO ALT0 GPIO1_IO14 100K PD
T06 GPIO1_IO15 NVCC_GPIO2 GPIO ALT0 GPIO1_IO15 100K PD
J02 I2C1_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[8] 100K PD
K01 I2C1_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[9] 100K PD
K02 I2C2_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[10] 100K PD
K03 I2C2_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[11] 100K PD
K05 I2C3_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[12] 100K PD
K06 I2C3_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[13] 100K PD
L01 I2C4_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[14] 100K PD
L02 I2C4_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[15] 100K PD
U01 JTAG_MOD NVCC_GPIO2 GPIO ALT0 JTAG_MOD 100K PU
U05 JTAG_TCK NVCC_GPIO2 GPIO ALT0 JTAG_TCK 47K PU
U03 JTAG_TDI NVCC_GPIO2 GPIO ALT0 JTAG_TDI 47K PU
U06 JTAG_TDO NVCC_GPIO2 GPIO ALT0 JTAG_TDO 100K PU
U04 JTAG_TMS NVCC_GPIO2 GPIO ALT0 JTAG_TMS 47K PU
U02 JTAG_TRST_B NVCC_GPIO2 GPIO ALT0 JTAG_TRST_B 47K PU
E20 LCD_CLK NVCC_LCD GPIO ALT5 GPIO3_IO[0] 100K PD
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors148
D21 LCD_DATA00 NVCC_LCD GPIO ALT5 GPIO3_IO[5] 100K PD
A22 LCD_DATA01 NVCC_LCD GPIO ALT5 GPIO3_IO[6] 100K PD
B22 LCD_DATA02 NVCC_LCD GPIO ALT5 GPIO3_IO[7] 100K PD
A23 LCD_DATA03 NVCC_LCD GPIO ALT5 GPIO3_IO[8] 100K PD
C22 LCD_DATA04 NVCC_LCD GPIO ALT5 GPIO3_IO[9] 100K PD
B23 LCD_DATA05 NVCC_LCD GPIO ALT5 GPIO3_IO[10] 100K PD
A24 LCD_DATA06 NVCC_LCD GPIO ALT5 GPIO3_IO[11] 100K PD
F20 LCD_DATA07 NVCC_LCD GPIO ALT5 GPIO3_IO[12] 100K PD
E21 LCD_DATA08 NVCC_LCD GPIO ALT5 GPIO3_IO[13] 100K PD
C23 LCD_DATA09 NVCC_LCD GPIO ALT5 GPIO3_IO[14] 100K PD
B24 LCD_DATA10 NVCC_LCD GPIO ALT5 GPIO3_IO[15] 100K PD
G20 LCD_DATA11 NVCC_LCD GPIO ALT5 GPIO3_IO[16] 100K PD
F21 LCD_DATA12 NVCC_LCD GPIO ALT5 GPIO3_IO[17] 100K PD
E22 LCD_DATA13 NVCC_LCD GPIO ALT5 GPIO3_IO[18] 100K PD
D23 LCD_DATA14 NVCC_LCD GPIO ALT5 GPIO3_IO[19] 100K PD
C24 LCD_DATA15 NVCC_LCD GPIO ALT5 GPIO3_IO[20] 100K PD
B25 LCD_DATA16 NVCC_LCD GPIO ALT5 GPIO3_IO[21] 100K PD
G21 LCD_DATA17 NVCC_LCD GPIO ALT5 GPIO3_IO[22] 100K PD
E23 LCD_DATA18 NVCC_LCD GPIO ALT5 GPIO3_IO[23] 100K PD
D24 LCD_DATA19 NVCC_LCD GPIO ALT5 GPIO3_IO[24] 100K PD
C25 LCD_DATA20 NVCC_LCD GPIO ALT5 GPIO3_IO[25] 100K PD
E24 LCD_DATA21 NVCC_LCD GPIO ALT5 GPIO3_IO[26] 100K PD
D25 LCD_DATA22 NVCC_LCD GPIO ALT5 GPIO3_IO[27] 100K PD
G23 LCD_DATA23 NVCC_LCD GPIO ALT5 GPIO3_IO[28] 100K PD
F25 LCD_ENABLE NVCC_LCD GPIO ALT5 GPIO3_IO[1] 100K PD
E25 LCD_HSYNC NVCC_LCD GPIO ALT5 GPIO3_IO[2] 100K PD
C21 LCD_RESET NVCC_LCD GPIO ALT5 GPIO3_IO[4] 100K PD
F24 LCD_VSYNC NVCC_LCD GPIO ALT5 GPIO3_IO[3] 100K PD
A15 MIPI_CSI_CLK_N MIPI_VDDA_1P8 MIPI_CSI_CLK_N
B15 MIPI_CSI_CLK_P MIPI_VDDA_1P8 MIPI_CSI_CLK_P
A16 MIPI_CSI_D0_N MIPI_VDDA_1P8 MIPI_CSI_D0_N
B16 MIPI_CSI_D0_P MIPI_VDDA_1P8 MIPI_CSI_D0_P
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 149
A14 MIPI_CSI_D1_N MIPI_VDDA_1P8 MIPI_CSI_D1_N
B14 MIPI_CSI_D1_P MIPI_VDDA_1P8 MIPI_CSI_D1_P
A19 MIPI_DSI_CLK_N MIPI_VDDA_1P8 MIPI_DSI_CLK_N
B19 MIPI_DSI_CLK_P MIPI_VDDA_1P8 MIPI_DSI_CLK_P
A20 MIPI_DSI_D0_N MIPI_VDDA_1P8 MIPI_DSI_D0_N
B20 MIPI_DSI_D0_P MIPI_VDDA_1P8 MIPI_DSI_D0_P
A18 MIPI_DSI_D1_N MIPI_VDDA_1P8 MIPI_DSI_D1_N
B18 MIPI_DSI_D1_P MIPI_VDDA_1P8 MIPI_DSI_D1_P
J13 MIPI_VDDA_1P8 MIPI_VDDA_1P8 MIPI_VDDA_1P8
J15 MIPI_VDDD_1P0 MIPI_VDDD_1P0 MIPI_VDDD_1P0
J17 MIPI_VDDD_1P0 MIPI_VDDD_1P0 MIPI_VDDD_1P0
AC08 ONOFF VDD_SNVS_IN ONOFF
AE10 PCIE_REFCLKIN_N PCIE_VPH PCIE_REFCLKIN_N
AD10 PCIE_REFCLKIN_P PCIE_VPH PCIE_REFCLKIN_P
AC10 PCIE_REFCLKOUT_N PCIE_VPH PCIE_REFCLKOUT_N
AB10 PCIE_REFCLKOUT_P PCIE_VPH PCIE_REFCLKOUT_P
AA13 PCIE_REXT PCIE_VPH PCIE_REXT
AE11 PCIE_RX_N PCIE_VPH_RX PCIE_RX_N
AD11 PCIE_RX_P PCIE_VPH_RX PCIE_RX_P
AC11 PCIE_TX_N PCIE_VPH_TX PCIE_TX_N
AB11 PCIE_TX_P PCIE_VPH_TX PCIE_TX_P
AA10 PCIE_VP PCIE_VP PCIE_VP
AA12 PCIE_VP_RX PCIE_VP_RX PCIE_VP_RX
AA11 PCIE_VP_TX PCIE_VP_TX PCIE_VP_TX
Y10 PCIE_VPH PCIE_VPH PCIE_VPH
Y12 PCIE_VPH_RX PCIE_VPH_RX PCIE_VPH_RX
Y11 PCIE_VPH_TX PCIE_VPH_TX PCIE_VPH_TX
R06 POR_B NVCC_GPIO1 GPIO ALT0 POR_B 100K PU
AE06 RTC_XTALI VDD_SNVS_1P8_CAP RTC_XTALI
AD06 RTC_XTALO VDD_SNVS_1P8_CAP RTC_XTALO
E10 SAI1_MCLK NVCC_SAI GPIO ALT5 GPIO6_IO[18] 100K PD
D12 SAI1_RXC NVCC_SAI GPIO ALT5 GPIO6_IO[17] 100K PD
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors150
E12 SAI1_RXD NVCC_SAI GPIO ALT5 GPIO6_IO[12] 100K PD
C12 SAI1_RXFS NVCC_SAI GPIO ALT5 GPIO6_IO[16] 100K PD
C11 SAI1_TXC NVCC_SAI GPIO ALT5 GPIO6_IO[13] 100K PD
E11 SAI1_TXD NVCC_SAI GPIO ALT5 GPIO6_IO[15] 100K PD
D11 SAI1_TXFS NVCC_SAI GPIO ALT5 GPIO6_IO[14] 100K PD
E09 SAI2_RXD NVCC_SAI GPIO ALT5 GPIO6_IO[21] 100K PD
D08 SAI2_TXC NVCC_SAI GPIO ALT5 GPIO6_IO[20] 100K PD
E08 SAI2_TXD NVCC_SAI GPIO ALT5 GPIO6_IO[22] 100K PD
D09 SAI2_TXFS NVCC_SAI GPIO ALT5 GPIO6_IO[19] 100K PD
C06 SD1_CD_B NVCC_SD1 GPIO ALT5 GPIO5_IO[0] 100K PD
B05 SD1_CLK NVCC_SD1 GPIO ALT5 GPIO5_IO[3] 100K PD
C05 SD1_CMD NVCC_SD1 GPIO ALT5 GPIO5_IO[4] 100K PD
A05 SD1_DATA0 NVCC_SD1 GPIO ALT5 GPIO5_IO[5] 100K PD
D06 SD1_DATA1 NVCC_SD1 GPIO ALT5 GPIO5_IO[6] 100K PD
A04 SD1_DATA2 NVCC_SD1 GPIO ALT5 GPIO5_IO[7] 100K PD
D05 SD1_DATA3 NVCC_SD1 GPIO ALT5 GPIO5_IO[8] 100K PD
B04 SD1_RESET_B NVCC_SD1 GPIO ALT5 GPIO5_IO[2] 100K PD
C04 SD1_WP NVCC_SD1 GPIO ALT5 GPIO5_IO[1] 100K PD
D03 SD2_CD_B NVCC_SD2 GPIO ALT5 GPIO5_IO[9] 100K PD
E03 SD2_CLK NVCC_SD2 GPIO ALT5 GPIO5_IO[12] 100K PD
F06 SD2_CMD NVCC_SD2 GPIO ALT5 GPIO5_IO[13] 100K PD
E04 SD2_DATA0 NVCC_SD2 GPIO ALT5 GPIO5_IO[14] 100K PD
E05 SD2_DATA1 NVCC_SD2 GPIO ALT5 GPIO5_IO[15] 100K PD
F05 SD2_DATA2 NVCC_SD2 GPIO ALT5 GPIO5_IO[16] 100K PD
E06 SD2_DATA3 NVCC_SD2 GPIO ALT5 GPIO5_IO[17] 100K PD
G03 SD2_RESET_B NVCC_SD2 GPIO ALT5 GPIO5_IO[11] 100K PD
C03 SD2_WP NVCC_SD2 GPIO ALT5 GPIO5_IO[10] 100K PD
C01 SD3_CLK NVCC_SD3 GPIO ALT5 GPIO6_IO[0] 100K PD
E01 SD3_CMD NVCC_SD3 GPIO ALT5 GPIO6_IO[1] 100K PD
B02 SD3_DATA0 NVCC_SD3 GPIO ALT5 GPIO6_IO[2] 100K PD
A02 SD3_DATA1 NVCC_SD3 GPIO ALT5 GPIO6_IO[3] 100K PD
G02 SD3_DATA2 NVCC_SD3 GPIO ALT5 GPIO6_IO[4] 100K PD
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 151
F01 SD3_DATA3 NVCC_SD3 GPIO ALT5 GPIO6_IO[5] 100K PD
F02 SD3_DATA4 NVCC_SD3 GPIO ALT5 GPIO6_IO[6] 100K PD
E02 SD3_DATA5 NVCC_SD3 GPIO ALT5 GPIO6_IO[7] 100K PD
C02 SD3_DATA6 NVCC_SD3 GPIO ALT5 GPIO6_IO[8] 100K PD
B01 SD3_DATA7 NVCC_SD3 GPIO ALT5 GPIO6_IO[9] 100K PD
G01 SD3_RESET_B NVCC_SD3 GPIO ALT5 GPIO6_IO[11] 100K PD
J01 SD3_STROBE NVCC_SD3 GPIO ALT5 GPIO6_IO[10] 100K PD
AB08 SNVS_PMIC_ON_REQ VDD_SNVS_IN SNVS_PMIC_ON_REQ
AA07 SNVS_TAMPER0 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER0
Y08 SNVS_TAMPER1 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER1
AB06 SNVS_TAMPER2 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER2
Y07 SNVS_TAMPER3 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER3
AA05 SNVS_TAMPER4 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER4
Y05 SNVS_TAMPER5 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER5
AA04 SNVS_TAMPER6 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER6
Y04 SNVS_TAMPER7 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER7
AA03 SNVS_TAMPER8 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER8
Y03 SNVS_TAMPER9 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER9
AE04 TEMPSENSOR_REXT VDD_TEMPSENSOR_1P8 TEMPSENSOR_REXT
AD04 TEMPSENSOR_RESERVE VDD_TEMPSENSOR_1P8 TEMPSENSOR_RESERVE
P06 TEST_MODE NVCC_GPIO1 GPIO ALT0 TEST_MODE 100K PD
L03 UART1_RXD NVCC_UART GPIO ALT5 GPIO4_IO[0] 100K PD
L04 UART1_TXD NVCC_UART GPIO ALT5 GPIO4_IO[1] 100K PD
L05 UART2_RXD NVCC_UART GPIO ALT5 GPIO4_IO[2] 100K PD
L06 UART2_TXD NVCC_UART GPIO ALT5 GPIO4_IO[3] 100K PD
M06 UART3_CTS NVCC_UART GPIO ALT5 GPIO4_IO[7] 100K PD
M05 UART3_RTS NVCC_UART GPIO ALT5 GPIO4_IO[6] 100K PD
M01 UART3_RXD NVCC_UART GPIO ALT5 GPIO4_IO[4] 100K PD
M02 UART3_TXD NVCC_UART GPIO ALT5 GPIO4_IO[5] 100K PD
A12 USB_H_DATA USB_H_VDD_1P2 USB_H_DATA
B12 USB_H_STROBE USB_H_VDD_1P2 USB_H_STROBE
C07 USB_OTG1_CHD_B USB_OTG1_VDDA_3P3 USB_OTG1_CHD_B
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors152
6.2.3 Case “Y”, i.MX 7Dual 19 ×19 mm 0.75 mm pitch ball map
The following table shows the i.MX 7Dual 19 ×19 mm, 0.75 mm pitch ball map.
A08 USB_OTG1_DN USB_OTG1_VDDA_3P3 USB_OTG1_DN
B08 USB_OTG1_DP USB_OTG1_VDDA_3P3 USB_OTG1_DP
B07 USB_OTG1_ID USB_OTG1_VDDA_3P3 USB_OTG1_ID
A07 USB_OTG1_REXT USB_OTG1_VDDA_3P3 USB_OTG1_REXT
A10 USB_OTG2_DN USB_OTG2_VDDA_3P3 USB_OTG2_DN
B10 USB_OTG2_DP USB_OTG2_VDDA_3P3 USB_OTG2_DP
B11 USB_OTG2_ID USB_OTG2_VDDA_3P3 USB_OTG2_ID
A11 USB_OTG2_REXT USB_OTG2_VDDA_3P3 USB_OTG2_REXT
V01 XTALI VDDA_1P8 XTALI
V02 XTALO VDDA_1P8 XTALO
1
The state immediately after RESET and before ROM firmware or software has executed.
Table 103. i.MX 7Dual 19 ×19 mm 0.75 mm pitch ball map
12345678910111213141516171819202122232425
A
VSS
SD3_DATA1
VSS
SD1_DATA2
SD1_DATA0
VSS
USB_OTG1_REXT
USB_OTG1_DN
VSS
USB_OTG2_DN
USB_OTG2_REXT
USB_H_DATA
VSS
MIPI_CSI_D1_N
MIPI_CSI_CLK_N
MIPI_CSI_D0_N
VSS
MIPI_DSI_D1_N
MIPI_DSI_CLK_N
MIPI_DSI_D0_N
VSS
LCD1_DATA01
LCD1_DATA03
LCD1_DATA06
VSS
A
B
SD3_DATA7
SD3_DATA0
VSS
SD1_RESET_B
SD1_CLK
VSS
USB_OTG1_ID
USB_OTG1_DP
VSS
USB_OTG2_DP
USB_OTG2_ID
USB_H_STROBE
VSS
MIPI_CSI_D1_P
MIPI_CSI_CLK_P
MIPI_CSI_D0_P
VSS
MIPI_DSI_D1_P
MIPI_DSI_CLK_P
MIPI_DSI_D0_P
VSS
LCD1_DATA02
LCD1_DATA05
LCD1_DATA10
LCD1_DATA16
B
C
SD3_CLK
SD3_DATA6
SD2_WP
SD1_WP
SD1_CMD
SD1_CD_B
USB_OTG1_CHD_B
USB_OTG1_VBUS
VSS
USB_OTG2_VBUS
SAI1_TXC
SAI1_RXFS
VSS
VDD_SOC
VSS
VSS
VDD_ARM
VSS
VSS
VDD_ARM
LCD1_RESET
LCD1_DATA04
LCD1_DATA09
LCD1_DATA15
LCD1_DATA20
C
12345678910111213141516171819202122232425
Table 102. i.MX 7Dual 19 x 19 mm functional contact assignments(continued)
Ball Ball Name Power Group Ball
type
1
Default
Mode
1
Default
Function
1
PD/PU
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 153
D
VSS
VSS
SD2_CD_B
VSS
SD1_DATA3
SD1_DATA1
VSS
SAI2_TXC
SAI2_TXFS
VSS
SAI1_TXFS
SAI1_RXC
ENET1_RDATA2
VDD_SOC
ENET1_RX_CLK
ENET1_TX_CLK
VDD_ARM
ENET1_TDATA3
ENET1_COL
VDD_ARM
LCD1_DATA00
VSS
LCD1_DATA14
LCD1_DATA19
LCD1_DATA22
D
E
SD3_CMD
SD3_DATA5
SD2_CLK
SD2_DATA0
SD2_DATA1
SD2_DATA3
NVCC_SD1
SAI2_TXD
SAI2_RXD
SAI1_MCLK
SAI1_TXD
SAI1_RXD
ENET1_RDATA3
ENET1_RD0
ENET1_RX_CTL
ENET1_TX_CTL
ENET1_TDATA1
ENET1_TDATA2
ENET1_CRS
LCD1_CLK
LCD1_DATA08
LCD1_DATA13
LCD1_DATA18
LCD1_DATA21
LCD1_HSYNC
E
F
SD3_DATA3
SD3_DATA4
VDD_SOC
VDD_SOC
SD2_DATA2
SD2_CMD
VSS
VSS
VDD_USB_OTG2_3P3_IN
VDD_USB_OTG1_3P3_IN
VSS
NVCC_SAI
VSS
ENET1_RDATA1
ENET1_RXC
ENET1_TXC
ENET1_TD0
VDD_SOC
VDD_SOC
LCD1_DATA07
LCD1_DATA12
VDD_ARM
VDD_ARM
LCD1_VSYNC
LCD1_ENABLE
F
G
SD3_RESET_B
SD3_DATA2
SD2_RESET_B
VSS
ECSPI1_MOSI
ECSPI2_MOSI
VSS
VSS
VSS
VSS
VSS
VSS
VSS
LCD1_DATA11
LCD1_DATA17
VSS
LCD1_DATA23
EPDC1_SDCE1
EPDC1_SDCE0
G
H
VSS
VSS
ECSPI1_SCLK
ECSPI1_MISO
ECSPI1_SS0
ECSPI2_MISO
NVCC_SD2
VDD_USB_OTG1_1P0_CAP
VDD_USB_H_1P2
PVCC_ENET_CAP
NVCC_ENET1
MIPI_VREG_0P4V
EPDC1_SDSHR
EPDC1_SDOE
EPDC1_SDCE3
EPDC1_SDCE2
EPDC1_PWRCOM
EPDC1_GDSP
H
J
SD3_STROBE
I2C1_SCL
VDD_SOC
VDD_SOC
ECSPI2_SCLK
ECSPI2_SS0
VSS
PVCC_SAI_SD_CAP
VDD_USB_OTG2_1P0_CAP
VDDA_MIPI_1P8
VDD_MIPI_1P0
VDD_MIPI_1P0
VSS
EPDC1_SDLE
EPDC1_SDCLK
VDD_ARM
VDD_ARM
EPDC1_GDOE
EPDC1_GDCLK
J
K
I2C1_SDA
I2C2_SCL
I2C2_SDA
VSS
I2C3_SCL
I2C3_SDA
NVCC_SD3
VSS
VSS
VSS
VSS
NVCC_LCD
EPDC1_PWRSTAT
EPDC1_GDRL
VSS
EPDC1_BDR1
EPDC1_BDR0
EPDC1_DATA15
K
Table 103. i.MX 7Dual 19 ×19 mm 0.75 mm pitch ball map (continued)
12345678910111213141516171819202122232425
12345678910111213141516171819202122232425
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors154
L
I2C4_SCL
I2C4_SDA
UART1_RXD
UART1_TXD
UART2_RXD
UART2_TXD
VSS
NVCC_SPI
VSS
VSS
VSS
NVCC_EPDC2
VSS
EPDC1_DATA14
EPDC1_DATA13
EPDC1_DATA12
EPDC1_DATA11
EPDC1_DATA10
EPDC1_DATA09
L
M
UART3_RXD
UART3_TXD
VDD_SOC
VDD_SOC
UART3_RTS
UART3_CTS
NVCC_I2C
VSS
VSS
VSS
VSS
NVCC_EPDC1
EPDC1_DATA05
EPDC1_DATA06
EPDC1_DATA07
EPDC1_DATA08
VSS
VSS
M
N
GPIO1_IO00
GPIO1_IO01
GPIO1_IO02
VSS
GPIO1_IO03
GPIO1_IO04
VSS
NVCC_UART
VSS
VSS
VSS
PVCC_EPDC_LCD_CAP
VSS
EPDC1_DATA02
EPDC1_DATA03
EPDC1_DATA04
DRAM_SDBA2
DRAM_DATA25
DRAM_DATA27
N
P
GPIO1_IO05
GPIO1_IO06
GPIO1_IO07
BOOT_MODE0
BOOT_MODE1
TEST_MODE
NVCC_GPIO1
VSS
VSS
VSS
VSS
VDD_SOC
EPDC_D00
EPDC1_DATA01
DRAM_SDBA1
DRAM_ADDR13
DRAM_DQM3
DRAM_DATA26
P
R
GPIO1_IO08
GPIO1_IO09
VDD_SOC
VDD_SOC
GPIO1_IO10
POR_B
VSS
PVCC_I2C_SPI_UART_CAP
VSS
VSS
VSS
VDD_SOC
VSS
VSS
VSS
DRAM_SDBA0
VSS
DRAM_DATA29
DRAM_DATA24
R
T
GPIO1_IO11
GPIO1_IO12
GPIO1_IO13
VSS
GPIO1_IO14
GPIO1_IO15
NVCC_GPIO2
VSS
VSS
VSS
VSS
VDD_SOC
VSS
NVCC_DRAM
DRAM_ADDR12
DRAM_ADDR10
DRAM_SDQS3_P
DRAM_SDQS3_N
T
U
JTAG_MOD
JTAG_TRST_B
JTAG_TDI
JTAG_TMS
JTAG_TCK
JTAG_TDO
VSS
VDD_1P2_CAP
VSS
VDD_SOC
VDD_SOC
VDD_SOC
VSS
VSS
NVCC_DRAM
DRAM_ADDR11
VSS
DRAM_DATA30
DRAM_DATA28
U
Table 103. i.MX 7Dual 19 ×19 mm 0.75 mm pitch ball map (continued)
12345678910111213141516171819202122232425
12345678910111213141516171819202122232425
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 155
V
XTALI
XTALO
VDDA_1P0_CAP
GPANAIO
VDD_XTAL_1P8
VDDA_1P8_IN
FUSE_FSOURCE
PVCC_GPIO_CAP
VDD_SOC
VDD_SOC
VDD_SOC
VDD_SOC
VSS
NVCC_DRAM
DRAM_ADDR06
DRAM_ADDR09
DRAM_DATA31
DRAM_DATA18
V
W
VSS
VSS
CCM_CLK2
VSS
VDDA_1P8_IN
VDD_LPSR_IN
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
NVCC_DRAM
DRAM_ADDR08
VSS
DRAM_DATA17
DRAM_DATA19
W
Y
CCM_CLK1_N
CCM_CLK1_P
SNVS_TAMPER09
SNVS_TAMPER07
SNVS_TAMPER05
VSS
SNVS_TAMPER03
SNVS_TAMPER01
VDDA_PHY_1P8
PCIE_VPH
PCIE_VPH_TX
PCIE_VPH_RX
VSS
VSS
VSS
VSS
VSS
VSS
VSS
NVCC_DRAM_CKE
NVCC_DRAM
DRAM_ADDR07
DRAM_ADDR05
DRAM_SDQS2_P
DRAM_SDQS2_N
Y
AA
VSS
VSS
SNVS_TAMPER08
SNVS_TAMPER06
SNVS_TAMPER04
VSS
SNVS_TAMPER00
VSS
VDDD_1P0_CAP
PCIE_VP
PCIE_VP_TX
PCIE_VP_RX
PCIE_REXT
DRAM_ODT1
VSS
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
DRAM_CS1_B
VSS
DRAM_DQM2
DRAM_DATA16
AA
AB
ADC2_IN2
ADC2_IN3
VDDA_ADC2_1P8
VSS
VSS
SNVS_TAMPER02
VSS
SNVS_PMIC_ON_REQ
VSS
PCIE_REFCLKOUT_P
PCIE_TX_P
VSS
DRAM_ZQPAD
DRAM_SDWE_B
DRAM_RAS_B
DRAM_ADDR01
DRAM_SDCKE0
DRAM_ADDR14
DRAM_ADDR00
DRAM_ADDR15
DRAM_ADDR04
DRAM_SDCKE1
DRAM_CS0_B
DRAM_DATA22
DRAM_DATA21
AB
AC
ADC2_IN0
ADC2_IN1
VDDA_ADC1_1P8
VDD_TEMPSENSOR_1P8
VDD_LPSR_1P0_CAP
VSS
PMIC_STBY_REQ
ONOFF
VSS
PCIE_REFCLKOUT_N
PCIE_TX_N
VSS
DRAM_VREF
DRAM_CAS_B
VSS
DRAM_ODT0
VSS
DRAM_ADDR02
VSS
DRAM_ADDR03
VSS
DRAM_RESET
VSS
DRAM_DATA23
DRAM_DATA20
AC
AD
ADC1_IN0
VSS
ADC1_IN1
TEMPSENSOR_RESERVE
VSS
RTC_XTALO
VSS
VDD_SNVS_IN
VSS
PCIE_REFCLKIN_P
PCIE_RX_P
VSS
DRAM_DATA14
DRAM_DATA13
DRAM_SDQS1_P
DRAM_DATA11
DRAM_DQM1
DRAM_DATA06
DRAM_DATA05
DRAM_DQM0
DRAM_SDQS0_N
DRAM_DATA00
DRAM_DATA01
DRAM_SDCLK0_P
DRAM_SDCLK0_N
AD
Table 103. i.MX 7Dual 19 ×19 mm 0.75 mm pitch ball map (continued)
12345678910111213141516171819202122232425
12345678910111213141516171819202122232425
Package information and contact assignments
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors156
AE
VSS
ADC1_IN2
ADC1_IN3
TEMPSENSOR_REXT
VSS
RTC_XTALI
VSS
VDD_SNVS_1P8_CAP
VSS
PCIE_REFCLKIN_N
PCIE_RX_N
VSS
DRAM_DATA15
DRAM_DATA08
DRAM_SDQS1_N
DRAM_DATA12
DRAM_DATA10
DRAM_DATA09
DRAM_DATA07
DRAM_DATA02
DRAM_SDQS0_P
DRAM_DATA04
DRAM_DATA03
VSS
VSS
AE
Table 103. i.MX 7Dual 19 ×19 mm 0.75 mm pitch ball map (continued)
12345678910111213141516171819202122232425
12345678910111213141516171819202122232425
Revision history
i.MX 7Dual Family of Applications Processors Datasheet,
Rev. 6
,
02/2019
NXP Semiconductors 157
7 Release notes
Table 104 provides release notes for this data sheet.
Table 104. Release notes
Rev.
Number Date Substantive Change(s)
Rev. 6 2/2019 On p. 1 and in Table 1, “Orderable parts,” added information related to new part number,
MCIMX7D5EVK10SD
•In Table 12, “Maximum supply currents,” updated maximum value for DRAM_VREF
•In Table 22, “PCIe PHY reference clock timing requirements:
In ‘Absolute maximum input voltage’ row, updated ‘Min.’ value
In ‘Absolute minimum input voltage’ row, updated ‘Min.’ and ‘Max.’ values
In ‘Absolute crossing point voltage’ row, updated ‘Max’. value
arm
Document Number: IMX7DCEC
Rev. 6
03/2019
Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including "typicals," must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer's
applications and products, and NXP accepts no liability for any vulnerability that is discovered.
Customers should implement appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST,
CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge,
Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast,
BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS,
Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil,
SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its
subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight,
DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are
trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture
and Power.org word marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org.
© 2016, 2017, 2019 NXP B.V.
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support