DS3100DK Datasheet by Microsemi Consumer Medical Product Group
View All Related Products | Download PDF Datasheet
o Microsemi
1
DS3100DK Demo Kit
Evaluates: DS3100 Timing IC
General Description
The DS3100DK is an easy-to-use demo and
evaluation kit for the DS3100 Stratum 3/3E timing
card IC. A surface-mounted DS3100 and careful
layout provide maximum signal integrity. An on-board
8051-compatible microcontroller and included
software give point-and-click access to configuration
and status registers from a personal computer. LEDs
on the board indicate interrupt, power-supply
function, and GPIO status. The board provides BNC
and bantam connectors for the composite clock and
BITS interfaces. Single-ended and LVDS clocks are
accessed via SMB connectors. All LEDs and
connectors are clearly labeled with silkscreening to
identify associated signals.
Demo Kit Contents
DS3100DK PCB
Universal Power Supply
Features
Soldered DS3100 for Best Signal Integrity
SMB Connectors, BNC, Bantam,
Transformers, and Termination Ease
Connectivity
Careful Layout for Analog Signal Paths
On-Board Stratum 3 Oscillator with Footprints
for Stratum 3E Oscillators
DS3100 Configured for CPU Bus Operation
for Complete Control Over the Device
On-Board Microcontroller and Included
Software Provide Point-and-Click Access to
the DS3100 Register Set
LEDs for Interrupt, Power Supplies, and GPIO
Included International Power Supply
Banana Jack VDD and GND Connectors
Support Use of Lab Power Supplies
Easy-to-Read Silkscreen Labels Identify the
Signals Associated with All Connectors,
Jumpers, and LEDs
Header Provided for Master/Slave Connection
to a Second DS3100DK
Software Provides GUI Fields for Most
Commonly Used Features Plus Full
Read/Write Access to the Entire Register Set
Software Support for Creating and Running
Configuration Scripts Saves Time During
Evaluation
Minimum System Requirements
PC Running Windows® XP or Windows 2000
Display with 1024 x 768 Resolution or Higher
Available USB Port or Serial (COM) Port
USB Cable or DB-9 Serial Cable
Ordering Information
PART
DESCRIPTION
DS3100DK Demo kit for DS3100
Windows is a registered trademark of Microsoft Corp.
For software revision 1.0.
Data Sheet
May 2012
O Microsemi
DS3100DK
2
Table of Contents
1. BOARD FLOORPLAN ........................................................................................................ 4
1.1 INPUT AND OUTPUT CLOCKS ......................................................................................................... 5
1.2 JUMPERS, HEADERS, AND SWITCH SETTINGS ................................................................................. 5
1.3 COMPOSITE CLOCK INTERFACE ..................................................................................................... 5
1.4 BITS INTERFACES ........................................................................................................................ 5
1.5 MICROCONTROLLER ..................................................................................................................... 5
1.6 POWER-SUPPLY CONNECTORS ..................................................................................................... 5
2. BASIC HARDWARE SETUP .............................................................................................. 6
2.1 USB DRIVER INSTALLATION .......................................................................................................... 6
3. INSTALLING AND RUNNING THE SOFTWARE............................................................... 7
3.1 COMMAND LINE OPTIONS.............................................................................................................. 7
4. OVERVIEW OF THE SOFTWARE INTERFACE ................................................................ 8
4.1 GLOBAL CONFIGURATION .............................................................................................................. 8
4.2 INPUT CLOCK MONITOR, DIVIDER, AND SELECTOR ......................................................................... 8
4.3 T0 DPLL ....................................................................................................................................10
4.4 T4 DPLL ....................................................................................................................................12
4.5 T0 APLL.....................................................................................................................................13
4.6 T4 APLL.....................................................................................................................................13
4.7 OUTPUT CLOCKS .........................................................................................................................14
4.8 DPLL FREQUENCY LIMITS, PHASE DETECTORS, DPLL LOCK CRITERIA ..........................................15
4.9 BITS RECEIVERS AND BITS TRANSMITTERS .................................................................................15
4.9.1 Note About Working with the BITS Receivers and Transmitters ......................................................... 15
4.10 COMPOSITE CLOCK RECEIVERS ................................................................................................19
4.11 REFCLK CALIBRATION ............................................................................................................19
4.12 REGISTER VIEW WINDOW .........................................................................................................20
4.13 CONFIGURATION SCRIPTS AND LOG FILE ...................................................................................21
4.13.1 Configuration Log File .......................................................................................................................... 21
4.13.2 Configuration Scripts ............................................................................................................................ 21
5. APPENDIX 1: HARDWARE COMPONENTS ................................................................... 22
6. APPENDIX 2: BITS MODE WRITE SEQUENCES ........................................................... 25
7. SCHEMATICS .................................................................................................................. 25
8. DOCUMENT REVISION HISTORY .................................................................................. 25
O Microsemi
DS3100DK
3
List of Figures
Figure 1-1. Board Floorplan ..........................................................................................................................................4
Figure 4-1. Software Main Screen ................................................................................................................................8
Figure 4-2. Software Input Clock Window ....................................................................................................................9
Figure 4-3. Software T0 DPLL Window ..................................................................................................................... 11
Figure 4-4. Software T4 DPLL Window ..................................................................................................................... 12
Figure 4-5. Software BITS Receiver Window (DS1 Mode) ....................................................................................... 16
Figure 4-6. Software BITS Receiver Window (E1 Mode) .......................................................................................... 16
Figure 4-7. Software BITS Transmitter Window (DS1 Mode and E1 Mode) ............................................................. 16
Figure 4-8. Software CC Receiver Window ............................................................................................................... 19
Figure 4-9. Software Register View Window ............................................................................................................. 20
List of Tables
Table 4-1. Mapping Between Input Clock Software Fields and DS3100 Register Fields ............................................9
Table 4-2. Mapping Between T0 DPLL Software Fields and DS3100 Register Fields ............................................. 11
Table 4-3. Mapping Between T4 DPLL Software Fields and DS3100 Register Fields ............................................. 13
Table 4-4. Mapping Between T0 APLL Software Fields and DS3100 Register Fields ............................................. 13
Table 4-5. Mapping Between T4 APLL Software Fields and DS3100 Register Fields ............................................. 13
Table 4-6. Mapping Between Output Clock Software Fields and DS3100 Register Fields ....................................... 14
Table 4-7. Mapping Between DPLL Software Fields and DS3100 Register Fields .................................................. 15
Table 4-8. Mapping Between BITS Software Fields and DS3100 Register Fields ................................................... 17
Table 4-9. Mapping Between CC Software Fields and DS3100 Register Fields ...................................................... 19
Table 4-10. Mapping Between REFCLK Software Fields and DS3100 Register Fields ........................................... 19
G Microsemi
Figure 171
APPENDIX 1: HARDWARE COMPONENTS
E
EDD
D DDDDDDDD
DD
D
D
DDDDDD
DDDDDD
DD DDDD
DS3100DK
4
1. BOARD FLOORPLAN
Figure 1-1 shows the floorplan of the DS3100DK. The DS3100 is in the center of the board, input clock SMB
connectors are along the top edge of the board, and output clock connectors are on the bottom edge. Between the
input clock connectors and the DS3100, land patterns are provided for several different types of local oscillators,
ranging from tiny, inexpensive TCXOs to larger, high-performance OCXOs. The right edge contains, from top to
bottom, power-supply connectors, DC-DC converters and power-indicator LEDs, reset pushbutton, serial
connector, and USB connector. An on-board DS87C520 microcontroller is located near the USB connector. The
left edge of the board is occupied by connectors and transformers for the DS3100’s built-in BITS
(DS1/E1/2048kHz) and composite clock (64kHz) receivers and transmitters. Between the BITS and composite
clock connectors are a JTAG header and three switches to control the DS3100’s MASTSLV, SONSDH, and
SRCSW pins.
See APPENDIX 1: HARDWARE COMPONENTS for a complete component list. Complete board schematics follow
Appendix 2.
Figure 1-1. Board Floorplan
`
Power
Option
5V Banana
Jack
GND Banana
Jack
RS232 9-Pin
Connector
USB
Connector
GPIO
Circuitry
Power Supply Circuitry
LVDS Output
Clocks
Microprocessor
DS3100
Single-ended Output Clocks
Composite Clock
Input Composite Clock
Output
JTAG
Header
BITS Interfaces
Oscillator Circuitry
Single-ended Input ClocksLVDS Input
Clocks
M\S Hdr
Switches
Reset
O Microsemi
DS3100DK
5
1.1 Input and Output Clocks
There are 13 SMB connectors at the top of the board labeled IC1–IC4, IC7–IC14, and SYNC2K that provide a
single-ended clock input to the DS3100. All single-ended clock inputs are connected to the DS3100 with a 50Ω
characteristic impedance trace and terminated with 50Ω at the device. Four additional SMB connectors labeled
IC5P, IC5N, IC6P, and IC6N provide differential clock inputs to the DS3100. These differential inputs have 50Ω
trace impedance and 50Ω termination at the device (i.e., 100Ω differential).
On the other end of the PCB are eight SMB clock output connectors labeled OC1–OC5 and OC9, OC10, and
OC11. All single-ended clock outputs are buffered at the DS3100 and connected to the SMB connector via a 50Ω
characteristic impedance trace. Four additional SMB connectors labeled OC6P, OC6N, OC7P, and OC7N provide
connections to the differential outputs from the DS3100.
1.2 Jumpers, Headers, and Switch Settings
Jumpers JMP1 to JMP4 (upper right of board) provide input settings to the four DS3100 GPIO pins. If a jumper is
installed the corresponding GPIO input is high. With no jumper the GPIO pin defaults low. LEDs DS5–DS8 indicate
the logic level of the GPIO pins (LED lit means GPIO pin is high). Switches SW7 to SW9 set the SONSDH,
SRCSW, and MASTSLV pins, respectively, high or low as indicated by the silkscreen. Headers J1 and J2 provide
access to BITS1 and BITS2 framer signals, respectively. Header J51 provides access to the JTAG port of the
DS3100. Header J15 provides interface to a master or slave board depending on position of switch SW6.
1.3 Composite Clock Interface
Bantam jacks J89 and J90 provide access to composite clock inputs IC1A and IC2A through a 2:1 transformer.
Jumpers JMP7 and JMP6 configure termination for IC1A and IC2A, respectively. Silkscreen text indicates which
jumper is necessary to set the interface at 110Ω, 120Ω, or 133Ω. Bantam jack J117 provides an interface through a
1:1 transformer to the OC8 composite clock output. Jumpers JMP8, JMP9, and JMP10 provide different attenuation
configurations that are represented in silkscreen (Rs = 91Ω with no jumper installed). See the schematics for
additional details on the composite clock termination circuitry.
1.4 BITS Interfaces
The BITS1 DS1/E1 LIU uses bantam connectors J85 and J55 or BNC connectors J83 and J57 for transmit and
receive interfaces, respectively. The BITS2 LIU uses bantam connectors J86 and J56 or BNC connectors J84 and
J58 for transmit and receive, respectively. There is a dual transformer package for each BITS transceiver
(component T1 for BITS1 and T2 for BITS2). See the schematics for additional details on the BITS termination
circuitry.
1.5 Microcontroller
The DS87C520 microcontroller has factory-installed firmware in on-chip nonvolatile memory. This firmware
translates memory access requests from the RS-232 serial port or USB port into register accesses on the DS3100.
When the microcontroller starts up it turns on DS16 to indicate that the controller is working correctly. A pushbutton
switch labeled RESET (SW5) at the right middle of the board resets the microcontroller as well as the DS3100.
1.6 Power-Supply Connectors
The included international power supply can be connected to jack J3 to power the board or a 5V lab power supply
can be connected across the red (J13) and black (J19) banana jacks. The 5V input is then regulated to 3.3V and
1.8V and distributed to board components.
O Microsemi
in Figure1r1
DS3100DK
6
2. BASIC HARDWARE SETUP
The following steps provide a quick start to using the DS3100DK.
1) Ensure switch SW6 (near the OC1 and OC2 connectors) is in the “MAS” position.
2) Set switch SW9 (MASTSLV) in the “1” (master) position.
3) Set switch SW8 (SRCSW) in the “0” (normal operation) position.
4) Set switch SW7 (SONSDH) to “1.”
5) To communicate with the board using a USB cable:
a) Configure the board for USB communication by placing jumpers to connect the middle and right pins of
JMP62 and JMP63 (i.e., place the jumpers toward the “USB” silkscreen).
b) Connect a USB cable between the USB connector on the DS3100DK and an available USB port on the
host computer.
6) To communicate with the board using a serial (RS-232) cable:
a) Configure the board for serial communication by placing jumpers to connect the left and middle pins of
JMP62 and JMP63 (i.e., place the jumpers toward the “RS232” silkscreen).
b) Connect a standard DB-9 serial cable between the serial port connector on the DS3100DK and an
available serial port on the host computer. (Be sure the cable is a standard straight-through cable
rather than a null-modem cable. Null-modem cables prevent proper operation.)
7) Attach the appropriate AC power supply prongs to the included international power supply.
8) Plug the power supply into an AC power outlet and connect the DC output of the supply to connector J3
(PWR in Figure 1-1).
At this point the power indicator LEDs DS1–DS4 should be lit green. Microcontroller status LED DS16 (to the right
of the USB connector) should also be lit green. SRFAIL LED DS9 should be lit red.
2.1 USB Driver Installation
When the DS3100DK is first connected to the PC using a USB cable, an on-board USB-to-serial converter IC is
automatically detected by Windows and the Found New Hardware Wizard is automatically started. Follow these
steps to install the driver:
1) In the first screen of this wizard, select “Install from a list or specific location” and click “Next.”
2) In the second screen, select “Search for the best driver in these locations,” check “Include this location in
the search,” and browse to the “USB” directory in the DS3100DK CD-ROM or downloaded ZIP file. Click
“Next.”
3) Click “Finished.”
4) Repeats steps 1 to 3 the second time the Found New Hardware Wizard starts.
After the drivers are installed, whenever the DS3100DK board is connected to a USB port on the PC the Windows
operating system will see the USB-to-serial converter IC as an additional COM port. The DS3100DK software will
automatically list the additional COM port in the PORT selection combo box in the upper-left corner of the main
window.
O Microsemi
DS3100DK
7
3. INSTALLING AND RUNNING THE SOFTWARE
At this time the DS3100 demo kit software only runs on Windows 2000 or Windows XP operating systems.
To install the demo kit software, run SETUP.EXE from the disk included in the DS3100DK box or from the zip file
available on the Microsemi website or from Microsemi timing products technical support..
After software installation is complete, set up the hardware as described above and run the software by double-
clicking the DS3100 Demo Kit icon on the Windows desktop or by selecting
Start→Programs→Microsemi→DS3100 Demo Kit. When the main window appears, select the correct serial
COM port in the box in the upper-left corner. (Note that when talking to the DS3100DK over USB cable, the USB-
to-serial converter on the board is a virtual COM port.) When communication has been properly established
between the software and the hardware, the ID field in the upper-left corner should indicate 3100 rev x, where x = 0
for a revision A1 device, and x = 1 for a revision A2 device.
The demo kit software always starts in demo mode (with the DEMO MODE checkbox in the upper-left corner
checked) to allow a user to look at the software without having the DK hardware connected to the PC. To connect
the software with the demo kit hardware, uncheck the DEMO MODE box. The software optionally initializes the
DS3100 device and then reads the state of the device to get ready for use.
3.1 Command Line Options
The demo kit software has these command line options:
-l <filepath> specifies an alternate log file example: “DS3100DK.exe –l mylog.mfg
-p[port#] sets the serial (COM) port number example: “DS3100DK.exe –p2” sets COM2
To add command line options to the DS3100 demo kit shortcut that the installer adds to the desktop, right click on
the shortcut and select Properties. In the Shortcut tab, at the end of the text in the Target text box, add a space
followed by the command line option.
G Microsemi
053100 Damn Ki|v1.0
'7 mum, pHAsgummsi,meucmm 0mg uENwst
‘D 3mm” HARDUUMH[ 1 Reglxlevv‘ew
M/s MASTER J’ r MEPDEN r man v FLEN [Phase] , ”D”
Wm.
PERT EDMUA v F LISEMEPD V7 ELENIDHase}
[Wm] ”W35” 3 2”“ Emmy Stnvl
F own MEIDE xuzos: EDARSEUM 53m . v FLLDLlrreq] 5an anpm
v ENABLE mum y—J r NALEILI \ kl j
Rxsmg v F‘NEUM SEHBEI v cm: ’7 Ln We
F SDH G SEINET 3732 g
4W cm mm, wow/m 5mm mm mm mm mm.
DPLL [LUCK SHEDPLLN v ZKBK FHDMTU v
a m r n mm mm_ “mm WW mm WWI
mm LKMEIDE Pmumrv mm y—Mm . ram 777mm . ISUFMM 777mm v “2 wow: 7
c: v ‘ I am v ma 7 E v hm: W 1m 7 pom; m w
W mu
EE 2 I EkHz v DW 3 v RE“ F LKNW um TEN-348D v
7 j Mme m '71
3. M . m v m . W 4 W mm mm mm mm 7
a I am; ma 5 v RE” imum 1mm nus mam v
v - yj. mm mm mm maaaan v
‘WDS J 5 "‘9“ J W '3 mm mm . sm— Emu P ‘1 7
\ij 6 l 19M v Dw 7 v ‘7775Ana‘ugj nus m7775n v
7 I 19“ v D‘R E v REFS FRED 7775MHz JPHMUN Dmpmngq ucs TEISEEEEI v
a I new L m E v \ ELKSEL AEW 1m V “ALARM [isnmnwz um y—Mamn v
a I W - m mm. mm - Law 1sz v 532% mm mm 7
m I W ; m m - TEES” mm” - DAMP m v W M r Aumsque‘ch
“ l ‘9“ ' D‘“ ' ‘2' PHASE MDNWURAND BmLDum m \Nccaksnzj
1:: 12:: L :1: 3' PHASE meg; mum 2mm 7 F PMEN D59 mmMHz v
' ' ' unnnu F PMPBEN .
NI 1m L m L mv MANUALPBDIMI v paum ”5‘“ :2? '
71 F PBEIFFKZ mm 2 v
0va was ,7
Mme Mme DEEMED” r REML Dwsab‘e AH
,wgngcgms—,wmmwm— Emma;
m M W m m M m [2
Made Bags: 7 was: . ALE V V Mode Bags: 7 was: . AM‘ E E
ALDS I I mg I. 1
mm mm v mm v m “mm mm v mun v
mm mm v {—M . mg I [WSW y—Ma 7 use . Mme
SSM unmnusm unmunsm RAI I 55” “UUWUSTU V “U“‘UUSW '
DS3100DK
8
4. OVERVIEW OF THE SOFTWARE INTERFACE
Figure 4-1. Software Main Screen
4.1 Global Configuration
In the upper-left corner of the main window are several global status and configuration fields. The ID field displays
the device part number and revision. The M/S field shows the status of the device MASTSLV pin
(MCR3:MASTSLV). The PORT field shows the COM port to which the DK board is connected. The DEMO MODE
checkbox, which is checked by default, must be unchecked to enable the software to communicate with the DK
board. The ENABLE POLLING checkbox, also checked by default, controls software polling of the device. Finally,
the SDH and SONET radio buttons (which control device register field MCR3:SONSDH) specify whether 1.544MHz
(SON) or 2.048MHz (SDH) is an available frequency option for input clocks 1 to 14 and output clock OC9.
4.2 Input Clock Monitor, Divider, and Selector
This box occupying the left-center section of the main window contains the most frequently used configuration and
status associated with input clocks IC1–IC14. At the far left, inputs IC1 and IC2 can be configured for either
composite clock (on the IC1A and IC2A pins, respectively) or CMOS (on the IC1 and IC2 pins, respectively).
Similarly, IC5 and IC6 can be configured for LVDS or PECL operation.
Just to the right of the input clock numbers 1–14 are software LEDs that indicate the state of each input as reported
by its input monitor. These LEDs are red in the absence of any other condition. When a clock of the correct
frequency is applied to an input, the associated LED turns yellow when activity is detected and, about 10 seconds
later, it turns green if the input clock frequency is within range. If an input is disqualified by one of the DPLLs
because the DPLL could not lock to it, the LED turns magenta.
O Microsemi
Figure 42
ee Table 4,1
Input Cluck Monilnr , Divider and Seleclot
INPUT uucxs *LUEK TIMEUUT >FHEQUENW MEASUREMENYi
So"HaldAdLockVaidEnab‘eBuck-el PHLKTO PHLKTDM In m n: m] Fl[e_:llalmce
‘I I I l I '7 n v |5D x 2m v mono v nun TuDPLLI—Zl
2I I I I I 17 E. . 1 |_
3 I I I I I p n :1 "m“ “10:91: >LEAKYBUCKETSETTINGS
‘ I I I I I '7 U v r: LuckAlamnmeuut up”, Lam, 5“ Dam“)
SIII-IWD_ r: DIS 4 a 255.
v xlsmal Swnchlng
s I I I I I p 1F VFW]
D L I’ Ulla-Faslfiwlchmg
7' I I I I ‘7 n v FsunAlamEnable 2 5 ‘ 3 256 '
B""'” 0;; WHaldAlamEnable 3B 4 s 255.
9 I I I I I p D ,
1D. I I I I 17 0 j rrnmummwmrunuwrs
“I I I I I [,7 0 v ‘INPUTELOBK SELECTEDFKEFEFKENEE
12. I I I I ,3 n .J SullLiwl[ppm] HadL'ml smmwpmluaamn
13III-IFU- ’—’—‘l—~J—
MI I I I I )7 n _1 INS 1524 1143 1524
DS3100DK
9
In the middle of the box, the FREQ and LK MODE fields configure the frequency and lock mode (direct-lock, DIVN,
or LOCK8K) for each input clock. At the bottom is a field to configure the DIVN divider used for inputs configured
for DIVN mode.
All the fields in the box containing the PRIORITY fields display information about either the T0 DPLL or the T4
DPLL, depending on which of two radio buttons is selected at the top of the box. The PRIORITY fields configure
the input clock priorities for the selected DPLL. The SEL REF field shows the selected reference for the DPLL,
while the REF 1, REF 2, and REF 3 fields display the three highest priority valid inputs for the DPLL. The FREQ
and PHASE fields show the real-time frequency and phase reported by the DPLL.
Clicking the More button opens another window (Figure 4-2) with additional input clock configuration and status
fields. See Table 4-1 for details.
Figure 4-2. Software Input Clock Window
Table 4-1. Mapping Between Input Clock Software Fields and DS3100 Register Fields
SOFTWARE FIELD DS3100 REGISTER FIELDS
MAIN WINDOW
IC1 Signal Format (CMOS or CC)
MCR5:IC1SF
IC2 Signal Format (CMOS or CC)
MCR5:IC2SF
IC5 Signal Format (LVDS or PECL) MCR5:IC5SF
IC6 Signal Format (LVDS or PECL)
MCR5:IC6SF
Input Clock Status LEDs 1 to 14
ISR1–ISR7 registers
LED red when ACT = 1, HARD = 1
LED yellow when ACT = 0, HARD = 1
LED green when ACT = 0, HARD = 0, LOCK = 0
LED magenta when ACT = 0, HARD = 0, LOCK = 1
FREQ 1 to 14
ICR1 to ICR14:FREQ[3:0]
LK MODE 1 to 14
ICR1 to ICR14:LOCK8K, and DIVN
PRIORITY 1 to 14
IPR1 to IPR7
SEL REF
PTAB1:SELREF
REF 1
PTAB1:REF1
REF 2
PTAB2:REF2
G Microsemi
Table 472
Figure 473
DS3100DK
10
SOFTWARE FIELD DS3100 REGISTER FIELDS
REF 3
PTAB3:REF3
FREQ (ppm)
FREQ1, FREQ2, and FREQ3 registers concatenated
PHASE (deg)
PHASE1 and PHASE2 registers concatenated
SUBWINDOW
Soft 1 to 14
ISR1 to ISR7:SOFT
Hard 1 to 14
ISR1 to ISR7:HARD
Act 1 to 14
ISR1 to ISR7:ACT
Lock 1 to 14
ISR1 to ISR7:LOCK
Valid 1 to 14
VALSR1, VALSR2
Enable 1 to 14
VALCR1, VALCR2
Bucket 1 to 14
ICR1 to ICR14:BUCKET
PHLKTO and PHLKTOM
PHLKTO
Lock Alarm Timeout
MCR3:LKATO
External Switching
MCR10:EXTSW
Ultra-Fast Switching
MCR10:UFSW
Soft Alarm Enable
MCR10:SOFTEN
Hard Alarm Enable
MCR10:HARDEN
Freq Measurement Input
MCR11:FMEASIN
Freq Measurement Freq
FMEAS
Freq Measurement Reference
MCR10:FMONCLK
Leaky Bucket Settings
LBxU, LBxL, BLxS, LBxD (x = 1 to 4)
Freq Monitor Limits, Input Clock
ILIMIT
Freq Monitor Limits, Selected Ref
SRLIMIT
4.3 T0 DPLL
The state of the T0 DPLL (free-run, locked, holdover, etc.) is shown in the STATE field. The STATE, SRFAIL, and
PHMON fields are buttons that represent latched status bits in the device. When the button is red, the
corresponding latched status bit has been set in the DS3100. Pressing the button clears the latched status bit and
changes the color of the button back to green. STATE indicates that the state of the T0 DPLL has changed since
the last time the button was pressed. SRFAIL indicates the selected reference has failed since the last time the
button was pressed. PHMON indicates the phase monitor limit (set by PMLIM) has been exceeded.
The state of the T0 DPLL can be forced using the combo box to the left of the STATE field, and the selected
reference can be forced using the CLK SEL field. Below the CLK SEL field is a field that configures the T0 DPLL for
revertive or nonrevertive input reference switching.
The frequency of the T0 DPLL is displayed in the FREQ field (fixed at 77.76MHz for the DS3100 T0 DPLL). The
acquisition and locked bandwidths are set by the ABW and LBW fields, respectively, and the damping factor is set
by the DAMP field. The acquisition bandwidth is only used if AUTOBW is checked. If the frequency of the T0
DPLL’s selected reference exceeds the SOFT LIMIT setting (in the DPLL FREQUENCY LIMITS box at the top of
the window), the SOFTLIM LED turns red.
The PALARM status LED and the PHASE MONITOR and BUILDOUT fields are advanced topics. See Table 4-2
and the DS3100 data sheet for more details.
Clicking the More button opens another window (Figure 4-3) with additional T0 DPLL configuration and status
fields.
Q Microsemi
T0 DPLL
HDLDDVER SYNEZK
.FaxtHeady-Slowfleady IFSMDN
V AEFSEN
'— Manual Holdover
r EFSEN
Holdovev Type SIDwAvg v F INDEP
F DEN
MInIHD Type y—Jlmtan, .
PHASE 0 v
MON IM 3
+ .
HDFleq[ppm] 00000000 L '
‘— RDAVE SUUHEE Icn v
>PHASE DETEETDH 2 [PD2]-
|7 PDZENABLE
PDZGA 4 v
PDZG D 2 v
PDZGASK 1 v
-APBU EIFFSET [n3]
UVUUD
DS3100DK
11
Figure 4-3. Software T0 DPLL Window
Table 4-2. Mapping Between T0 DPLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD DS3100 REGISTER FIELDS
MAIN WINDOW
STATE combo box
MCR1:T0STATE
STATE status box
OPSTATE:T0STATE
CLK SEL
MCR2:T0FORCE
Revertive/Nonrevertive
MCR3:REVERT
FREQ
Fixed by T0 DPLL architecture
ABW
T0ABW
LBW
T0LBW
DAMP
T0CR2:DAMP
STATE latched status
MSR2:STATE
SRFAIL
MSR2:SRFAIL
PHMON
MSR3:PHMON
PALARM
TEST1:PALARM
SOFTLIM
OPSTATE:T0SOFT
AUTOBW
MCR9:AUTOBW
LIMINT
MCR9:LIMINT
PMLIM
PHMON:PMLIM
PMEN, PMPBEN
PHMON:PMEN, PMPBEN
PBOEN, PBOFRZ
MCR10:PBOEN, PBOFRZ
RECAL
FSCR3:RECAL
MANUAL PBO
OFFSET1 and OFFSET2
SUBWINDOW
Fast Ready, Slow Ready
MSR4:FHORDY, SHORDY
Manual Holdover
MCR3:MANHO
Holdover Type
HOCR3:AVG, FAST
Mini HO Type
HOCR3:MINIHO
HO Freq
HOCR1, HOCR2, HOCR3[2:0]
RDAVG
HOCR3:RDAVG
FSMON
OPSTATE:FSMON
AEFSEN, EFSEN
MCR3:AEFSEN, EFSEN
INDEP
FSCR2:INDEP
OCN
FSCR2:OCN
PHASE
FSCR2:PHASE
MONLIM
FSCR3:MONLIM
Table 473
Figure 474
PHASE DETEETUH 2[F'DZ]
'7 FDZ Enab‘e
PDZGA v
PD 26 D 2 v
PDZGABK 1 .
DS3100DK
12
SOFTWARE FIELD DS3100 REGISTER FIELDS
SOURCE
FSCR3:SOURCE
PD2 ENABLE
T0CR3:PD2EN
PD2GA, PD2GD
T0CR3:PD2GA, PD2GD
PD2GA8K
T0CR2:PD2GA8K
APBO OFFSET
PBOFF
4.4 T4 DPLL
The state of the T4 DPLL (locked or not locked) is shown in the STATE field. The LOCK and NO INPUT fields are
buttons that represent latched status bits in the device. When the button is red, the corresponding latched status bit
has been set in the DS3100. Pressing the button clears the latched status bit and changes the color of the button
back to green. LOCK indicates the state of the T4 DPLL has changed since the last time the button was pressed.
NO INPUT means the T4 DPLL has no valid inputs available. The selected reference for the T4 DPLL can be
forced using the CLK SEL field.
The frequency of the T4 DPLL is displayed in the FREQ field. When the FREQ field is changed, the frequency of
the T4 option listed in the T4 APLL combo box automatically changes to match. If the T4 option in the T4 APLL box
is currently selected, the frequencies of all the T4 options in the OC1–OC7 output clock combo boxes automatically
change to frequencies derived from the new T4 APLL frequency. These changes match what happens inside the
DS3100 device.
The bandwidth of the T4 DPLL is set by the BW field, while the damping factor is set by the DAMP field. If the
frequency of the T4 DPLL’s selected reference exceeds the SOFT LIMIT setting (in the DPLL FREQUENCY
LIMITS box at the top of the window), the SOFTLIM LED turns red. Digital feedback (vs. analog feedback through
the T4 APLL) can be selected using the DIGFB checkbox.
The LKT4T0 and T4MT0 fields are advanced topics. See Table 4-3 and the DS3100 data sheet for more details.
Clicking the More button opens another window (Figure 4-4) with additional T4 DPLL configuration and status
fields.
Figure 4-4. Software T4 DPLL Window
G Microsemi
DS3100DK
13
Table 4-3. Mapping Between T4 DPLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD
DS3100 REGISTER FIELDS
MAIN WINDOW
STATE
OPSTATE:T4LOCK
CLK SEL
MCR4:T4FORCE
FREQ
T4CR1:T4FREQ
BW
T4BW
DAMP
T4CR2:DAMP
LOCK
MSR3:T4LOCK
NO INPUT
MSR3:T4NOIN
SOFTLIM
OPSTATE:T4SOFT
DIGFB
MCR4:T4DFB
LKT4T0
MCR4:LKT4T0
T4MT0
T0CR1:T4MT0
SUBWINDOW
PD2 Enable
T4CR3:PD2EN
PD2GA, PD2GD
T4CR3:PD2GA, PD2GD
PD2GA8K
T4CR2:PD2GA8K
4.5 T0 APLL
The T0 APLL can be connected to the output of the T0 Output DFS or to the T0 Low-Frequency DFS (see the
DS3100 data sheet for details). The non-77.76 options in the Input Freq field are all frequencies from the T0 Low-
Frequency DFS. The difference between the “77.76 Analog” and “77.76 Digital” options is whether the feedback
path of the T0 DPLL includes the T0 feedback APLL. The APLL output frequency is always four times the input
frequency. When the Input Freq field is changed, the Output Freq field changes to match, and all the T0 options in
the OC1–OC7 output clock combo boxes also change to frequencies derived from the new T0 APLL frequency.
These changes match what happens in the DS3104 device.
Table 4-4. Mapping Between T0 APLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD DS3100 REGISTER FIELDS
Input Freq T0CR1:T0FREQ
Output Freq Derived by software from Input Freq
4.6 T4 APLL
The T4 APLL can be connected to the output of the T4 DPLL or to the output of the T0 DPLL (specifically the T0
low-frequency DFS; see the DS3100 data sheet for details) as specified by the SRC DPLL field. When SRC DPLL
is set to T4, the Input Freq field follows the T4 DPLL FREQ field. When SRC DPLL is set to T0, several frequency
options from the T0 Low-Frequency DFS are available in the Input Freq field.
When the FREQ field is changed in the T4 DPLL box, the frequency of the T4 option listed in the T4 APLL combo
box automatically changes to match. If the T4 option in the T4 APLL box is currently selected, the frequencies of all
the T4 options in the OC1–OC7 output clock combo boxes automatically change to frequencies derived from the
new T4 APLL frequency. These changes match what happens in the DS3100 device. Similarly, if the T4 APLL
option is changed, the frequencies of all the T4 options in the OC1–OC7 output clock combo boxes automatically
change to frequencies derived from the new T4 APLL frequency.
Table 4-5. Mapping Between T4 APLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD
DS3100 REGISTER FIELDS
SRC DPLL T0CR1:T4APT0
Input Freq T0CR1:T0FT4
Output Freq Derived by software from Input Freq
G Microsemi
DS3100DK
14
4.7 Output Clocks
The fields in this box configure the DS3100’s 11 output clocks. The 2K8K field specifies the source (T0 path or T4
path) for the 2kHz and 8kHz clock options for output clocks OC1–OC7. Similarly the DIG1 and DIG2 fields
configure the Digital1 and Digital2 frequency options for OC1–OC7 (see the DS3100 data sheet for details).
The OC1–OC7 fields specify the output frequencies for outputs OC1–OC7. Note that when the T0 APLL setting is
changed, the frequencies of all the T0 options in the OC1–OC7 fields automatically change to frequencies derived
from the new T0 APLL frequency. Similarly, when the T4 APLL setting is changed, the frequencies of all the T4
options in the OC1–OC7 fields automatically change to frequencies derived from the new T4 APLL frequency.
These changes match what happens in the DS3100 device.
The OC89 field specifies whether the T0 path or the T4 path is the source for output clocks OC8 and OC9. OC8 is
the 64kHz composite clock output. The OC8 field configures the OC8 output clock for 50% or 5/8 duty cycle, and
also for whether or not the output signal has 8kHz BPVs and optionally 400Hz absence-of-BPVs per ITU-T G.703
Appendix II options a) and b). The “8K” options in the list enable the 8kHz BPVs but not the 400Hz absence-of-
BPVs. The “400” options enable both the 8kHz BPVs and the 400Hz absence-of-BPVs. OC9 is a dedicated
1.544MHz or 2.048MHz output. When OC89 specifies that OC8 and OC9 are sourced from the T4 path, the Auto
Squelch checkbox specifies whether or not OC8 and OC9 are automatically squelched when T4 has no valid input
references. When OC89 indicates T0 path, Auto Squelch is not available.
OC10 is an 8kHz output that can be configured as a 50% duty cycle clock or a frame pulse and can optionally be
inverted. OC11 is a 2kHz output that can be similarly configured.
Table 4-6. Mapping Between Output Clock Software Fields and DS3100 Register Fields
SOFTWARE FIELD DS3100 REGISTER FIELDS
2K8K
FSCR1:2K8KSRC
DIG1
MCR6:DIG1SS, MCR7:DIG1F
DIG2
MCR6:DIG2SS, MCR7:DIG2F, MCR7:DIG2AF
OC1–OC7
OCR1–OCR4
OC89
MCR4:OC89
Auto Squelch
T4CR1:ASQUEL
OC8
OCR4:OC8EN, T4CR1:OC8DUTY MCR8:OC8NO8,
MCR8:OC8400
OC9
OCR4:OC9EN, T4CR1:OC9SON
OC10
OCR4:OC10EN, FSCR1:8KPUL, FSCR1:8KINV
OC11
OCR4:OC11EN, FSCR1:2KPUL, FSCR1:2KINV
G Microsemi
Tab‘e 477
Figure 475 Figure 476
DS3100DK
15
4.8 DPLL Frequency Limits, Phase Detectors, DPLL Lock Criteria
The DPLL frequency limits specify the hard and soft limits of the DPLL frequency range. When the selected
reference for a DPLL exceeds the soft limit, the SOFTLIM LED for that DPLL turns red but the selected reference is
not disqualified. If the FLLOL (frequency limit loss of lock) box is checked in the DPLL Lock Criteria box, when the
selected reference for a DPLL exceeds the hard limit the DPLL will lose lock (T4 transitions to Not Locked state,
and T0 transitions to LOL state).
The remaining fields are advanced topics. See Table 4-7 and the DS3100 data sheet for more details.
Table 4-7. Mapping Between DPLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD DS3100 REGISTER FIELDS
MCPDEN
PHLIM2:MCPDEN
USEMCPD
PHLIM2:USEMCPD
D180
TEST1:D180
COURSELIM
PHLIM2:COARSELIM
FINELIM
PHLIM1:FINELIM
FLEN
PHLIM1:FLEN
CLEN
PHLIM2:CLEN
FLLOL
DLIMIT3:FLLOL
NALOL
PHLIM1:NALOL
HARD LIMIT
HARDLIM[9:0] in DLIMIT1 and DLIMIT2
SOFT LIMIT
DLIMIT3:SOFTLIM
4.9 BITS Receivers and BITS Transmitters
The Mode fields in these boxes set the basic line mode for each port: DS1 ESF, DS1 SF, E1, 2048kHz, and—for
receivers only—6312kHz. The termination fields specify the line termination for the receiver or transmitter port. The
DS3100 supports either internal termination (inside the device) or external termination (resistors on the board). As
shipped from the factory the demo kit board does not have external termination resistors populated, and therefore
only the internal termination options should be selected in the software. The input clock (IC1–IC14) to which each
BITS receiver should be connected is specified in the Clock Dest fields. The output clock to which each BITS
transmitter should be connected is specified in the Clock Source fields.
In the BITS Transmitters box, when a transmitter is in DS1 ESF or E1 mode, the SSM value to be transmitted can
be specified in the SSM fields below the TX1 and TX2 headings. In E1 mode, the Sa bit channel in which to
transmit SSMs can be specified (for both transmitters) in the small combo box next to the SSM label.
In the BITS Receivers box, when a receiver is in DS1 ESF or E1 mode, the received SSM values are displayed in
the SSM fields below the RX1 and RX2 headings. In E1 mode, the Sa channel in which to look for incoming SSMs
can be specified (for both receivers) in the small combo box next to the SSM label.
The headings RX1, RX2, TX1, and TX2 are buttons that open secondary windows (Figure 4-5, Figure 4-6, and
Figure 4-7) with additional configuration and status fields.
4.9.1 Note About Working with the BITS Receivers and Transmitters
1) When switching BITS transmitter or receiver modes, the termination should be changed to match: internal
100Ω for DS1, internal 75Ω or 120Ω for E1 and 2048kHz, internal 75Ω for 6312kHz.
2) When switching BITS transmitter modes between DS1 and E1/2048kHz modes, the rate of the transmit
clock source (typically OC9) must be changed to match: 1.544MHz for DS1 and 2.048MHz for
E1/2048kHz.
3) Enabling analog loopback between BITS transmitter 1 and BITS receiver 1 and between BITS transmitter 2
and BITS receiver 2 can be useful in evaluating the DS3100. During device initialization the DS3100DK
software enables analog loopback for both BITS transmitter/receiver pairs by setting ALB = 1 (registers
B1BLCR4 (address 93h) and B2BLCR4 (address 113h)).
O Microsemi
BITS Receiver 1 (D5! made) ;‘ (Q
-SlENAL|/D LIU RECEWER DS‘ FRAME“ inncnxi
MuKSm-ce Rene! W 3325 M
F mexz :nc-s
HllK P‘" W ' LEIS mm ‘52 BI: v F We,“ W aucnuu ‘ v
RDUT Pm W ' mm Yevm'mah'nn 5mm v r M Imegalinn mama: ‘53“: v
RSER p‘ omen v y— E
" TWSRW “ FRAME svuc— -LATCHED sums—
FSynchxl None ' MmluMnd: unwed v Swen": man . L05 A‘s
. ‘2 v I unr I HA]
rERRflR RESPDNSE Swan/WI“?! Syryccmlfli FPS CW 3 I EDFA I FDV
l‘ \maidatenn & v m: Shnnvuwfl I ALDS mnfimm Dflmns , Evaos Dan“
I’ \mmntfl/x I ”VE'EW‘W‘ lSZameeleclad
I' \maflaleunLlflS l UnduEwaizad DUFCHluxa 2/4 :1. gm
I’ mam: unUEIF Sand Lmuds] > -25 Heme New 9925 Damn-d
F \rwaldalennA‘S I Fmamzzm
BITS human ([1 mode) I; E}
*5‘ENALI/El LILI HECE‘VEH >E1FRAMEH
MELKSouvoe 2' Mn v new ‘7 HDBa
P can
LDS Ell-Hie 192le v wscma I I as any
RUUTHn LW ' \mumflumiulinn Enabled v 2552mm v I I ERUUUF
HSEH Pin mam . Imam 11 MFSym: -55M
:4 us .
“WED?“ ”5'"? ManlmMnde DlsaMed v finawF v
FRAME SYNE
RCLK Pu Law v
{anon nEsmng— Sammy [an] 12 v 5,“ my“ ISao man man
I‘ lnvaidele an It] was sham“. I ALEIS FAS Only . ISafi mun um
I’ ImammthF'Vs I me. swim, Aunt-H 9 last; man man
'— Inveidale on LUS I um Equalwzed WW ' Isa man man
I’ Imaidals an nor 5th mg [as] > .2 5 new": NW, ISaH [m
l' Invaidala anAlS
BITS Transmilter 1 (051 made) Q [g] ans Transmiller 1 ([1 mode)
—SIENALIIU— 051 FDHMATTEH— —SIGNAL|/fl— :FDHMATYER
v HD33
TIN p," l—_'. P 3325 “N P‘" :1” F ant-4
' YDLK F" v .
TELK H" 1—H ormal V l' Tvansmit RAI m Dvsabled '- 15“ pm hwy.
D H d l— Japmm EH64; mm Pin Disabbd . '— SnPass DS3100DK
16
Figure 4-5. Software BITS Receiver Window (DS1 Mode)
Figure 4-6. Software BITS Receiver Window (E1 Mode)
Figure 4-7. Software BITS Transmitter Window (DS1 Mode and E1 Mode)
APPENDIX 2: BITS MODE WRITE SEQUENCES
DS3100DK
17 of 38
Table 4-8. Mapping Between BITS Software Fields and DS3100 Register Fields
SOFTWARE FIELD
DS3100 REGISTER FIELDS
BITS RECEIVERS, MAIN WINDOW
Mode
BMCR:RMODE, BCCR3:MCLKFC, BRMMR, BRCR1:RB8ZS,
BRCR1:RFM, BRCR3:RHDB3, BRCR3:RCRC4. See
APPENDIX 2: BITS MODE WRITE SEQUENCES for exact
write sequences for each mode.
Termination
BLCR3:RION, BLCR3:RIMP
Clock Dest
BCCR2:RCLKD
Left-Hand SSM Combo (E1 Only)
BRMCR:SSMCH
SSM Text Boxes
DS1 ESF: BTBOC:TBOC
E1: BRMSR, BRSSM:SSM
ALB
BLCR4:ALB
ALOS
BLIR1:LOS
OOF, AIS, RAI
BRIR1:OOF, AIS, RAI
BITS RECEIVERS, DS1 AND E1 WINDOWS
MCLK Source
BCCR3:MCLKS
RCLK Pin
BCCR3:RCEN, RCINV
ROUT Pin
BCCR3:ROEN, ROINV, ROUTS
RSER Pin
BCCR3:RSEN
FSync Dest
BCCR2:RSYNCD
Invalidate on X Zeros
BCCR5:ZEROS
Increment on BPVs
BCCR5:BPV
Invalidate on LOS
BCCR5:LOS
Invalidate on OOF
BCCR5:OOF
Invalidate on AIS
BCCR5:AIS
Reset Button
BLCR1:LIRST
LOS Criteria
BLCR1:LCS
Internal Termination
BLCR3:RION
Turns Ratio
BLCR3:RTR
Monitor Mode
BLCR3:RMONEN
Sensitivity (dB)
BLCR3:RSMS
Short Circuit
BLIR1:SC
ALOS
BLIR1:LOS
Over Equalized
BLIR1:OEQ
Under Equalized
BLIR1:UEQ
Signal Level (dB)
BLIR2:RL
BITS RECEIVERS, DS1 WINDOW ONLY
B8ZS
BRCR1:RB8ZS
Japanese CRC-6
BRCR1:RJC
Japanese RAI
BRCR2:RSFRAI
RAI Integration
BRCR2:RAIIE
Sync Time
BRCR1:SYNCT
Sync Criteria
BRCR1:SYNCC
Auto Resync
BRCR1:ARC, SYNCD
OOF Criteria
BRCR2:OOFC
Resync Now
BRCR1:RESYNC
BOC Rx Reset
BRBCR:RBR
BOC Filter
BRBCR:RBF
BOC Disint.
BRBCR:RBD
LOS
BRSR1:LOS
OOF
BRSR1:OOF
COFA
BRSR2:COFA
AIS
BRSR1:AIS
RAI
BRSR1:RAI
G Microsemi
APPENDIX 2:
BITS MODE WRITE SEQUENCES
DS3100DK
18
SOFTWARE FIELD
DS3100 REGISTER FIELDS
PDV
BRSR2:RPDV
8 Zeros Detected
BRSR2:8ZD
16 Zeros Detected
BRSR2:16ZD
SEFE
BRSR2:SEFE
B8ZS Detected
BRSR2:B8ZS
Frame Bit Error
BRSR2:FBE
BITS RECEIVERS, E1 WINDOW ONLY
HDB3
BRCR3:RHDB3
CRC-4
BRCR3:RCRC4
LOS Criteria
BRCR4:RLOSC
MF Sync
BRCR5:RMFS
Sync Criteria
BRCR3:FRC
Auto Resync
BRCR3:SYNCD
Resync Now
BRCR3:RESYNC
FAS OOF
BRIR2:FASSA (LED), BRSR3:FASRC (latched status button)
CAS OOF
BRIR2:CASSA (LED), BRSR3:CASRC (latched status button)
CRC4 OOF
BRIR2:CRC4SA (LED), BRSR3:CRCRC (latched status
button)
SSM Filter
BRMCR:SSMF
SSM SaX Latched Status Button
BRMSR:SaX
SSM SaX Value
BRSX4
BITS TRANSMITTERS, MAIN WINDOW
Mode
BMCR:TMODE, BTMMR, BTCR1:TB8ZS, BTCR3:TFM,
BTCR4:THDB3, BTCR4:TCRC4, 60, 61. See APPENDIX 2:
BITS MODE WRITE SEQUENCES for exact write sequences.
Termination
BLCR2:TION, BLCR2:TIMP
Clock Source
BCCR1:TCLKS
Left-and SSM Combo (E1 Only)
Indicates which of BTSa4–BTSa8 to use
Main SSM Combos
DS1 ESF: BRBOC:RBOC
E1: BTSa4–BTSa8
BITS TRANSMITTERS, DS1 AND E1 WINDOWS
TIN Pin
BCCR4:TIINV
TCLK Pin
BCCR4:TCEN, TCINV
TOUT Pin
BCCR4:TOEN, TOINV, TOUTS
MFS Source
BCCR4:TMFS
FSync Source
BCCR1:TSYNCS
Transmit AIS
BLCR4:TAIS
Line Build-Out
BLCR2:LBO
Open-Circuit
BLIR1:OC
Short-Circuit
BLIR1:SC
BITS TRANSMITTERS, DS1 WINDOW ONLY
B8ZS
BTCR1:TB8ZS
Transmit RAI
BTCR1:TRAI
Japanese CRC-6
BTCR1:TJC
Japanese RAI
BTCR2:TSFRAI
F-Bit Pass-Through
BTCR1:TFPT
CRC6 Pass-Through
BTCR1:TCPT
Pulse Density Enforce
BTCR2:TPDE
F-Bit Corruption 1
BTCR2:FBCT1
F-Bit Corruption 2
BTCR2:FBCT2
Insert BPV
BTCR3:IBPV
Loss of Tx Clock
BTSR1:LOTC
Pulse Density
BTSR1:TPDV
O Microsemi
Tab‘e 479
Composite Cluck Receivers E] “
“:1 ":2 E v ECEDGE
NanHz ! g F Inclementan But Ella!
No 4UUH2 ! g F Invalldale on AMI
F Invalldale on Lus
Figure 478
DS3100DK
19
SOFTWARE FIELD
DS3100 REGISTER FIELDS
BITS TRANSMITTERS, E1 WINDOW ONLY
HDB3
BTCR4:THDB3
CRC-4
BTCR4:TCRC4
TS0 Pass-Through
BTCR4:TFPT
Si Pass-Through
BTCR4:TSiS
Insert BPV
BTCR3:IBPV
SiAF – Sa8 Checkbox
BTOCR:SiAF – Sa8
SiAF – Sa8 Text Box
BTSiAF – BTSa8
Loss of Tx Clock
BTSR1:LOTC
4.10 Composite Clock Receivers
The AMI and LOS fields are buttons that represent latched status bits in the device. When the button is red, the
corresponding latched status bit has been set in the DS3100. Pressing the button clears the latched status bit and
chnages the color of the button back to green. The AMI buttons indicate that a deviation from the expected one-
BPV-in-eight pattern has occurred since that button was last pressed. The LOS buttons indicate no pulses were
detected in the input signal in a 32µs period (i.e., after two missing pulses).
Clicking the More button opens another window (Figure 4-8) with additional composite clock configuration and
status fields. See Table 4-9 and the DS3100 data sheet for more details.
Figure 4-8. Software CC Receiver Window
Table 4-9. Mapping Between CC Software Fields and DS3100 Register Fields
SOFTWARE FIELD DS3100 REGISTER FIELDS
MAIN WINDOW
AMI
MSR3:AMI1, AMI2
LOS
MSR3:LOS1, LOS2
SUBWINDOW
No 8kHz
MSR4:IC1NO8, IC2NO8
No 400Hz
MSR4:IC1NO4, IC2NO4
CCEDGE
MCR5:CCEDGE
Increment on Bit Error
MCR5:BITERR
Invalidate on AMI
MCR5:AMI
Invalidate on LOS
MCR5:LOS
4.11 REFCLK Calibration
Any known frequency error in the local oscillator can be calibrated out inside the DS3100 by setting the ppm value
in the REFCLK box. Also the significant edge of the REFCLK signal can be selected in XOEDGE field.
Table 4-10. Mapping Between REFCLK Software Fields and DS3100 Register Fields
SOFTWARE FIELD DS3100 REGISTER FIELDS
REFCLK slider/text box
MCLKFREQ[15:0] in MCLK1 and MCLK2
O Microsemi
Figure 479
RegisIeI View
-Cl|ck a 799319! ID lead ll. DoubIe Dink a remake! KO Mlle K.
[0010] ISRI as [0020] ICRl an [0030] VAICRI FF [I
[0001] [[12 Inc [nun] ISRZ es [0021] ICRZ an [0031] VAICRZ 3F [I
{0002] REV In [0012] [5R3 as {0022] ICR3 nu [nuaz] HCRI an [I
[anus] TESTl [4 [0013] [5R4 as [0023] [CR-I nu [nuaa] MCRZ OF [I
[noun —— an [0014] ISRS as [0024] ICRS us [0034] MCR3 I15 [I
[0005] MSRl an [0015] ISRS es [0025] ICRE D3 [003;] mu an [I
[anus] HSRZ an [nms] [5R7 an [0025] ICR7 na [mas] HCRS 02 [I
{0007] FREQZl nu [nu17] HERA 2F {0027] ICRE 03 [0037] IFSR 02 Ll
[uuua] “SR3 1U [UUIE] [PR1 32 [0025] ICR‘3 us [0038] MCRs 7}? [I
[0009] OPSTATE 84 [0019] IPR2 54 [0029] ICRID 03 [0039] MCR7 08 [I
[flUflA] PTABl no [001A] [PR3 75 [002A] ICRll 03 [003A] I-[CRP cs [I
[anus] PTAEIZ DE [00113] [PR4 93 {0023] ICR12 01 [was] HERB FEI Ll
[uuuC] FREQI uu [001C] IPRS BA [002C] [(21213 Ell [uuaC] [Ian 99 [I
[0000] FREQZ on [001D] [PR6 Dc [0020] [c1214 01 [003D] MCLKZ 99 [I
[DUDE] VALSRI nn [flfllE] [PR7 FE [0025] W on [003E] HOCRI on [I
Lunar] VALSRZ 30 [nun-'1 -— an {unzn —— nu mun-'1 [mm on [I
« _>J
-UiI:k a "gnu held In [sad i Double nick a Insists |n mu: iI
|[unnu1|m Device Idanlihcahnn Hegslel, LSB
[m ReadAll |
00011100
DS3100DK
20
XOEDGE
MCR3:XOEDGE
4.12 Register View Window
When the Register View button in the upper-right corner of the main window is pressed, the Register View window
appears (Figure 4-9). In this window the DS3100’s entire register set can be viewed and manually written as
needed.
The large grid that takes up most of the window displays the DS3100 register map. For each register, its
hexadecimal address in square brackets is followed by its register name and its contents in 2-digit hex format. The
DS3100’s core register space is 00h to 7Fh, its BITS transceiver 1 register space is 80h to FFh, and its BITS
transceiver 2 register space is 100h to 17Fh. To distinguish between BITS1 and BITS2 registers, all BITS1 register
names start with “B1” and all BITS2 register names start with “B2.”
When a register is clicked in the main register grid, its register description and fields are displayed at the bottom of
the window. Due to the limited speed of the serial port, the demo kit software does not continually poll every
register and does not make real-time updates to the data displayed on the Register View screen. Registers can be
manually read as described below.
The Register View window supports the following actions:
• Read a register. Select the register in the register map.
• Read a register field. Select the register in the map or the register field at the bottom of the window.
• Read all registers. Press the Read All button.
• Write a register. Double-click the register name in the register map and enter the value to be written.
• Write a register field. Select the register, double-click the field, and enter the value to be written.
• Write a multiregister field. Double-click one of the register names and enter the value for the field.
Figure 4-9. Software Register View Window
O Microsemi
DS3100DK
21
4.13 Configuration Scripts and Log File
4.13.1 Configuration Log File
Every write command issued by the software to the DS3100DK board is logged in file DS3100DKLog.mfg located
in the same directory as the software executable. This file can be viewed in Notepad by pressing the Log File
button in the upper-right corner of the main window. Command line option "-l <filepath>" can be used to cause the
software to write to a file other than DS3100DKLog.mfg.
4.13.2 Configuration Scripts
All or part of the text in the Configuration Log File can be copied to a text file with a .mfg file extension for use as a
configuration script. Configuration scripts are useful for quickly configuring the DS3100 without having to remember
all the required settings.
Two types of configuration scripts are possible: full and partial. A full configuration script can start with the DS3100
in its power-on default state and configure every aspect of the device to bring it to a desired state. To make a full
configuration script, run the software, uncheck the Demo Mode checkbox, configure the device using the DK
software fields, press the Log File button, and use File → Save As in Notepad to save a copy of the entire log file to
a different file name.
A partial configuration file only affects a subset of the DS3100 device settings. To make a partial configuration
script, press the Log File button to view the Log File, press Ctrl-End to jump to the end of the file, and add to the
end of the file a carriage return or comment line (starting with a semicolon) to delimit the start of the configuration.
Save and exit the Log File. Next, configure the device using the DK software fields (including Register View writes
as needed). Finally, view the log file again, jump to the end, and copy everything from the delimiter you made
earlier to the end of the file into a new .mfg file.
To run a configuration script, press the Config Script button in the upper-right corner of the main window. In the
script window, type the path to the file or press the Browse button to navigate to the file. Note that the browser
window does not display the files and folders on the Desktop other than My Documents and My Computer. These
files and folders can be found under My Computer under c:\Documents and Settings\<username>\Desktop.
Note that when the Demo Mode checkbox is unchecked, during the "Initializing the DS3100" step, the software
runs configuration script startup.mfg located in the same directory as the software executable. Startup.mfg can be
edited or replaced as needed to change the initial configuration of the device.
G Microsemi
DS3100DK
22
5. APPENDIX 1: HARDWARE COMPONENTS
DESIGNATION QTY DESCRIPTION SUPPLIER PART
C1, C2, C3, C8, C42,
C59–C138, C140,
C142, C143, C145,
C147, C149, C151,
C155, C163–C166,
C168, C169
99 0.1µF ±20%, 16V X7R ceramic capacitors (0603) AVX 0603YC104MAT
C4, C5, C6, C27 4 Ceramic capacitors (0805)
DO NOT POPULATE
— —
C6 1 470pF ±5%, 50V CGO ceramic capacitor (0805) AVX 08055A471JAT
C7 1 68µF ±20%, 16V tantalum capacitor (D case) Panasonic ECS-T1CD686R
C13, C14, C16, C41 4 4.7µF ±10%, 25V X5R ceramic capacitors (1206) Panasonic ECJ-3YB1E475K
C17, C18, C20 3 6.8µF ±10%, 6.3V X5R ceramic capacitors (1206) Panasonic ECJ-3YB0J685K
C28, C29 2 560pF ±5%, 50V NPO ceramic capacitor (0805) Panasonic ECJ-2VC1H561K
C34–C38, C51–C58,
C139, C141, C153,
C154
17 10µF ±20%, 10V ceramic capacitors (1206) Panasonic ECJ-3YB1A106M
C39, C40 2 22pF ±10%, 100V ceramic capacitors (1206) AVX Corp. 12061A220KAT2A
C43 1 1µF ±10%, 16V ceramic capacitor (1206) Panasonic ECJ-3YB1C105K
C48, C49 2 0.47µF ±10%, 16V ceramic capacitors (0805) Panasonic ECJ-2YB1C474K
D1 1 1A, 50V general-purpose silicon diode
Vishay
General
Semiconductor
1N4001
D7 1 1A, 40V Schottky diode International
Rectifier
10BQ040
DS1–DS4 4 Green LEDs (SMD) Panasonic LN1351C
DS5–DS10 6 Red LEDs (SMD) Panasonic LN1251C
DS16 1 Green LED (SMD) Panasonic LN1351C
J1, J2 2 6-pin socket strip (single row, vertical) Samtec SS-106-TT-2-N
J3 1 2.1mm/5.5mm closed frame power jack, high
current (right angle PCB, 24VDC at 5A)
CUI Inc. PJ-002AH
J6–J12, J20–J41 29 5-pin vertical SMB connectors (50Ω) AMP 413990-1
J13 1 Red socket (banana plug, horizontal) Mouser 164-6219
J14 1 5-pin vertical SMB connector (50Ω)
DO NOT POPULATE
AMP 413990-1
J15 1 10-pin terminal strip (dual row, vertical) Samtec TSW-105-07-T-D
J19 1 Black horizontal banana plug socket Mouser 164-6218
J50 1 DB9 right-angle connector (long case) AMP 747459-1
J51 1 10-pin terminal strip (dual row, vertical) — —
J54 1 USB Type B black connector (right angle) Molex 67068-0000
J55, J56, J85, J86,
J89, J90, J117 7 Bantam jack connectors (right angle) Switchcraft RTT34B02
G Microsemi
DS3100DK
23
DESIGNATION QTY DESCRIPTION SUPPLIER PART
J57, J58, J83, J84 4 5-pin BNC connectors (50Ω, right angle) Trompeter CBJR220
JMP1–JMP5, JMP8,
JMP9, JMP11, JMP12,
JMP36, JMP37
11 2-pin vertical headers, 0.100" centers Samtec TSW-102-07-T-S
JMP6, JMP7, JMP10,
JMP62, JMP63 5 3-pin vertical headers, 0.100" centers Samtec TSW-103-07-T-S
R1 1 10kΩ ±5%, 1/10W resistor (0805) Panasonic ERJ-6GEYJ103V
R2, R3, R6, R7, R9,
R11, R16-R18
9
Resistors (0603)
DO NOT POPULATE
— —
R4, R5, R8, R10, R12-
R14, R20, R25, R42,
R46, R84, R91, R92,
R95-R97, R110, R113,
R115, R116, R120-
R123
25 10kΩ ±5%, 1/16W resistors (0603) Panasonic ERJ-3GEYJ103V
R15, R22, R23, R24,
R41, R43, R45,
R47,R49, R51, R53,
R55, R80, R81, R111,
R112, R117, R118
18 0Ω ±1%, 1/16W resistors (0603) AVX CJ10-000F
R19, R21, R40, R44 4 1.0kΩ ±5%, 1/16W resistors (0603) Panasonic ERJ-3GEYJ102V
R26, R27, R48, R50,
R52
5 470Ω ±5%, 1/16W resistors (0603) Panasonic ERJ-3GEYJ471V
R28 1 33.2Ω ±1%, 1/16W resistors (0603) Panasonic ERJ-3EKF33R2V
R29–R35, R59–R68 17 51.1Ω ±1%, 1/16W resistors (0603) Panasonic ERJ-3EKF51R1V
R36–R39, R94, R108 6 330Ω ±5%, 1/16W resistors (0603) Panasonic ERJ-3GEYJ331V
R54, R56, R57, R58,
R74, R77, R89, R90 8 0Ω ±5%, 1/8W resistors (1206) Panasonic ERJ-8GEYJ0R00V
R69, R72 2 110Ω ±1%, 1/10W resistors (0805) Panasonic ERJ-6ENF1100V
R70, R93 2 10.0Ω ±1%, 1/10W resistors (0805) Panasonic ERJ-6ENF10R0V
R71, R73 2 13.0Ω ±1%, 1/10W resistors (0805) Panasonic ERJ-6ENF13R0V
R75, R76 2 90.9Ω ±1%, 1/10W resistors (0805) Panasonic ERJ-6ENF90R9V
R78 1 357Ω ±1%, 1/10W resistor (0805) Panasonic ERJ-6ENF3570V
R79 1 301Ω ±1%, 1/10W resistor (0805) Panasonic ERJ-6ENF3010V
R82, R83 2
0.0
Ω
±
5%, 1/10W resistors (0805)
Panasonic ERJ-6GEY0R00V
R85–R88 4
Resistors (0805)
DO NOT POPULATE
— —
SW5 1 4-pin single-pole switch Panasonic EVQPAE04M
SW6 1 6-pin, through-hole, DPDT slide switch Tyco SSA22
SW7, SW8, SW9 3 3-pin, through-hole, SPDT slide switches Tyco SSA12
T1, T2 2 16-pin SMT T1 transformers
(1CT:1CT and 1CT:2CT, 1500V)
Pulse
Engineering
PE-68678
T3 1 12-pin dual SMT transformer
(64kbps, 1CT:2CT, 1500V) Pulse
Engineering T7015
T4 1 64kbps interface transformer
(1CT:1CT, 1500V, 6-pin DIP) Pulse
Engineering PE-65540
TP1–TP10, TP18–
TP42, TP49–TP61,
TP65–TP84
68 1 plated hole test points
DO NOT STUFF — —
U1 1 High-frequency, surface-mount socket
(1mm, 256-pin BGA) Ironwood
Electronics SG-BGA-6017
G Microsemi
DS3100DK
24
DESIGNATION QTY DESCRIPTION SUPPLIER PART
U2, U3, U5, U7,
U9–U26 22 TinyLogic ultra-high-speed 2-input OR gates
(5-pin SOT23) Fairchild
Semiconductor NC7SZ32M5
U4, U6 2 3.3V linear regulator
(16-pin TSSOP-EP) Maxim MAX1793EUE-33
U8 1 1.8V linear regulator
(16-pin TSSOP-EP) Maxim MAX1793EUE-18
U27 1 3-line to 8-line decoder/demultiplexer
(16-pin SO ) Texas
Instruments SN74HC138NSR
U41 1 Dual RS-232 transmitter/receiver
(16-pin, 300-mil SO) Maxim DS232AS
U42 1 High-speed microcontroller
(44-pin TQFP, 0°C to +70°C) Maxim DS87C520-ECL
U44 1 Microprocessor voltage monitor (3.08V reset
threshold) (4-pin SOT143) Maxim MAX811TEUS-T
U45 1 Microprocessor voltage monitor (4.38V reset
threshold) (4-pin SOT143) Maxim MAX812MEUS-T
U46 1 Single-chip USB to UART bridge
(28-pin QFN) Silicon
Laboratories CP2101
Y1 1 3.3V, 12.8MHz OCXO (5-pin) through-hole
DO NOT POPULATE Vectron MC853X4-035W
Y2 1 3.3V, 12.8MHz TCXO (4-pin SMD) Vectron C2260A1-0028
Y3 1
3.3V, 12.8MHz OCXO (4-pin SMD)
DO NOT POPULATE
Vectron C4400A1-0044
Y7 1 Low-profile 11.0592MHz crystal Pletronics LP49-33-11.0592M
G Microsemi
DS3100DK
25
6. APPENDIX 2: BITS MODE WRITE SEQUENCES
BITS Transmitter
DS1 ESF
address 04h, set TMODE[1:0]=00
address 21h, write 02h
address 21h, write 00h
address 27h, write 0Ch
address 29h, write 00h
address 21h, write 80h
address 21h, write C0h
DS1 SF/D4
address 04h, set TMODE[1:0]=00
address 21h, write 02h
address 21h, write 00h
address 27h, write 0Ch
address 29h, write 04h
address 21h, write 80h
address 21h, write C0h
E1
address 04h, set TMODE[1:0]=01
address 21h, write 02h
address 21h, write 00h
address 29h, write 00h
address 2Ah, write 05h
address 21h, write 81h
address 21h, write C1h
address 60h, write 1Bh
address 61h, write 40h
2048kHz
address 04h, set TMODE[1:0]=10
address 21h, write 02h
address 21h, write 00h
BITS Receiver
DS1 ESF
address 04h, set RMODE[1:0]=00
address 0Ah, write 40h
address 20h, write 02h
address 20h, write 00h
address 22h, write 40h
address 20h, write 80h
address 20h, write C0h
DS1 SF/D4
address 04h, set RMODE[1:0]=00
address 0Ah, write 40h
address 20h, write 02h
address 20h, write 00h
address 22h, write 60h
address 20h, write 80h
address 20h, write C0h
E1
address 04h, set RMODE[1:0]=01
address 20h, write 02h
address 20h, write 00h
address 24h, write 68h
address 20h, write 81h
address 20h, write C1h
2048 kHz
address 04h, set RMODE[1:0]=10
address 20h, write 02h
address 20h, write 00h
6312 kHz
address 04h, set RMODE[1:0]=11
address 20h, write 02h
address 20h, write 00h
7. SCHEMATICS
The DS3100DK schematics are featured in the following 13 pages.
8. DOCUMENT REVISION HISTORY
REVISION
DATE
DESCRIPTION
091806 Initial DS3100DK data sheet release.
110206
Updated document to describe software v0.7 features: (page 1) Features section; (page 6)
Section 3.1; (page 14) Section 4.12; (page 15) added Section 4.13, 4.13.1, 4.13.2; updated
table captions.
040507 Updated document for sentence clarification (pages 6, 7, 13, and 14).
052307
Updated document to describe changes and new features of software revision 0.8; added USB
support.
071807
Added screen shots of the software windows and updated document to describe new features
of software revision 1.0.
2012-05 Reformatted for Microsemi. No content change.
. N m w m m r
2 no A A5
Human Emmznuzm ‘
mag: EEXEEED
Es 9E
rSEN Snumj: ma 7i. r5: mm
mm: LmamnEE mg 5
s A I x x A A A A
: A M o A A A A x o A w
“Ema A “SEXY: AA
92?? E5 5. a m a W mm
, y y y a y
A if? %4:T;m,
A?“ :ixiu: a
o :ummz: $2.29“: .515
. w w m u u u . . n ma
flou‘imiz m «N w . m A , , , > m:
mzm n e u m
5% ‘
m E 5 A5
38% ‘5
.3 Ba 5
mum a;
Funm Axum m3 :3: Li
M mum m5 AME: As;
A m ram/5m NDKIde‘ x‘um‘nmvnz
rxm {E Emitua Eulm
flag ‘
2!. NE
y y :84
a a E84 saw AoEzoo NC.
A , $1 an
m as m wmzflo‘fi fizmuu ajwssammnfi E:
49:: ms
nu Wonmuo‘ w: Bo R:
8250 G “2 #3
monsolmfi is a:
6183‘: Ea:
mama‘s Ages was.
‘ w muo‘a fl Em:
A any i wan.
Go a GA
5 %§ §
. A \ mg
m 3 EUR \ “U04 So am:
mama A A A A A A A A A A A A N:
‘5: Em A; :AAAAAAAA:mAAxA
m“ a auamawanamawawmmflwm a.
a M n K 1 “A V m y . 1 m w s s awn. m
a M A w m m m m
c GE :E mmntmupvmfimfi A a m m m m
as: SEEK: m5: “ELK”: a}.
_ n m w m p
INTEL MUX
Mon Jul 16 11:12:10 2007
SRFAIL
IFSEL2
IC2A
IC7
IC8
MASTSLV
SONSDH
MASTSLV
WDT
10K
330
.1UF
RED
0.0
0.0
10K
OC2
OC1
OC7NEG
OC7POS
OC6POS
OC5
OC4
IC1
IC2
IC3
IC6POS
IC5POS
IC5NEG
IC10
IC11
GPIO2
JTCLK
JTRST
JTDI
NC3
NC2
NC1
INTREQ
RDY
IFSEL0
HIZ
PORNOT
WDT
CS_3100
SRCSW
NA
JTDO
IC1A
SONSDH
INTREQ
OC9
SRCSW
OC3
OC8POS
OC10
AD3
AD4
AD5
AD6
AD7
REFCLK
ALE
WR
RD
A8
GPIO3
TM2
TM1
OC6NEG
JTMS
AD7
10K
IFSEL0
DNP
DNP
10K
IFSEL2
DNP
10K
IFSEL1
DNP
DNP
IC13
IC4
OC8NEG
DNP DNP
IFSEL1 GPIO1
AD2
AD1
AD0
OC11
U1
H16
H15
G16
H14
G15
F16
G14
F15
E16
E15
D16
C16
D15
C15
E14
D14
C14
K14
J16
E2
F3
H2
J1
R14
A10
B10
C10
A11
B5
B4
B11
C11
A12
B12
A13
C12
B13
P6
P7
A5
N1
N2
P1
A15
R8
R9
P9
T9
T8
R11
P12
C13
F14
C6
A7
B7
C7
A8
B3
C2
C8
A9
B9
C9
A3
C1
B8
J14
B15
H1
T7
B6
M3
M2
J2
B14
T15
R6
L14
T6
K16
R7
K15
P2
R15
N3
P13
P3
P14
C5
J15
R1
1
2
1
1
1
1
1
R80
1
2
1
2
1
1
1
1
1
1
1
1
1
1
1
1
R9
1
2
R7
1
2
R97
1
2
R94
1
2
C8
1
2
DS10
1
2
1
2
SW7
1
2
3
SW8
1
2
3
SW9
1
2
3
R12
1
2
R8
1
2
R83
1
R10
1
2
R84
1
2
R82
1
2
R98
1
2
R91
1
2
R92
1
2
R99
1
2
DS3100DK01C0
JML
110705
1OF 13
A4
R81
R13
A14
SYNC2K
IC14
IC12
IC9
IC6NEG
0.0
2
AD6
RESREF
GPIO4
TP28
TP1
TP2
TP3
TP4 TP5
DNP
2
1
R95
10K
R96
10K
TP29
TP31
TP36
TP37 TP38
TP39 TP40
TP41
TP42
TP61
1
TP34
TP32
CONTROL
DS3100_U1
SRCSW
SRFAIL
ALE
WR_RW*
CS*
WDT
SONSDH
MASTSLV
IFSEL<2>
JTDO
RESREF
REFCLK
RST*
HIZ*
IFSEL<0>
IFSEL<1>
RD_DS*
RDY*
INTREQ
NC1
NC2
NC3
JTDI
JTRST*
JTCLK
JTMS
AD<4>
AD<5>
AD<6>_CPHA
GPIO1
GPIO3
GPIO2
GPIO4
TM1
TST_RA1
TM2
TST_RB2
TST_RB1
TST_RA2
TST_RC2
TST_RC1
TST_TA2
TST_TA1
TST_TC1
TST_TB2
TST_TB1
TST_TC2
A<1>
IC14
IC13
IC11
IC12
IC10
IC8
IC9
IC6NEG
IC7
IC5NEG
IC5POS
IC6POS
IC3
IC4
IC2
IC1A
IC2A
IC1
SYNC2K
A<0>
A<8>
A<5>
A<7>
A<6>
A<3>
A<4>
A<2>
OC3
OC4
OC5
OC6POS
OC6NEG
OC7POS
OC7NEG
OC8POS
OC8NEG
OC9
OC10
AD<0>_SDO
AD<1>_SDI
AD<2>_SCLK
AD<3>
AD<7>_CPOL
OC1
OC2
OC11
VCC
SPDT
SPDT
SPDT
VCC
VCC
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
m m w r m
a;
"$125 $528 V
EEXEEED
ma:
ER 33:: E
m u
(z
w NEE? as SEE
x Nznpmnn x:
P x 92:5 SE SE Egan”.
45;; a 55 mama a mu; wan: x s 3.. if? V
33 $25 9 g a . :2, E Es: mate 5. i‘jig
mugynnanziigfig 5 Er 57:3 x #9:”: i
h gm Nanf : Eon mm
4, Nmanp «7 an“: \ A; 4 urn
#3 Emammfl
: a
a a
w“: 3
a; V V
w T 3 am 128 V ,2
: P
E E
m n;
mu %
m nzu a win 4.
d V .
2
m 3 gamma m:
m 3 J V
A m2 ‘ x
« mu x m
a m z
. fin
:r 31% $71.63
m : “is: l 2:.
mm; mm P x :2: .r 59% :33
”mm m E mmmmmmmmmmmmmmmmmmmmmmmm an; :3. V 3 xi ; :31 x
DE m S gawmmflmgngnmmflmmmmmm WE Eur: v m! a! 1:3:
a» m 3 Hr. . y a as .855 a E“? SE
V V k V V .KuZHwC mn no 3» 9:3 unquZHmu sw«
m u u u 1‘ ‘C 5::
,V g a :5:
WT... :7 u: mnkjn aqua“ «at» Fuou niniwflpu
w, um mm mm Swamammm
A A A A
u u u u
,u ,u ,u ,u E“ S
c c = c 33
w w w 1 Etc 11
w w w 1 if
v g a V HE
R w m p a
DS3100DK01C0
Mon Jul 16 11:14:08 2007
110705
2OF 13
JML
AVDD_PLL1
AVDD_PLL2
AVDD_PLL3
AVDD_PLL4
0.0
0.0
0.0
0.0
2
1
R13
2
1
R14
1
TP18
1
TP10
1
R15
1
R22
1
R23
1
R24
2
1
C163
2
1
C164
2
1
C165
2
1
C166
1
TP9
1
TP7
1
TP8
1
TP6
6
5
4
3
2
1
J2
6
5
4
3
2
1
J1
D3
A2
C4
E12
E5
E4
D13
T16
T1
N13
N12
N5
N4
M13
D12
M12
M5
M4
L11
L10
L9
L8
L7
L6
K11
D5
K10
K9
K8
K7
K6
J11
J10
J9
J8
J7
D4
J6
H11
H10
H9
H8
H7
H6
G11
G10
G9
A16
G8
G7
G6
F11
F10
F9
F8
F7
F6
E13
A1
G4
E10
E9
E8
E7
D10
D7
R16
R1
N10
N7
M10
M9
M8
M7
K13
B16
K12
K5
K4
J12
J5
H12
H5
G13
G12
G5
B1
C3
B2
A6
F12
F5
F4
E11
E6
D11
D9
N11
N9
N8
N6
M11
D8
M6
L13
L12
L5
L4
J13
J4
H13
H4
F13
D6
N14
P4
M16
R4
M14
P5
M15
T4
P8
H3
G3
G2
E3
D2
G1
F1
E1
D1
U1
N16
N15
T13
P16
P15
P11
R12
T14
T12
L16
T11
L15
P10
R10
T10
U1
T3
R3
L3
T2
R2
M1
L1
K3
L2
T5
J3
R5
K2
K1
F2
U1
NA
DUT18
NA
RTIP2
RRING2
TTIPA2
TRINGA2
TRINGA2
THZE2
TTIPA2
ROUT2
RCLK2
MCLK2
RSER2 TSER2
TOUT2
TIN2
TCLK2
NA
RTIP1
RRING1
TTIPA1
TRINGA1
TRINGA1
THZE1
TTIPA1
ROUT1
RCLK1
MCLK1
RSER1 TSER1
TOUT1
TIN1
TCLK1
DUT33
10K
10K
RSER2
ROUT2
TSER2
RCLK2
TIN2
NA
RSER1
ROUT1
TSER1
RCLK1
TIN1
I31
I14
I30
.1UF
.1UF
.1UF
AVDD_PLL4
.1UF
AVDD_PLL3
AVDD_PLL1
AVDD_PLL2
I15
DUT33
GND
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
3
2
1
6
CONN_6P_U
5
4
3
2
1
6
CONN_6P_U
5
4
DS3100_U1
PWR &GND
VDD3
VDD2
VDD1
VDDIO6
VDDIO7
VDDIO8
VDDIO9
VDDIO11
VDDIO10
VDDIO12
VDDIO13
VDDIO16
VDDIO14
VDDIO15
VDDIO18
VDDIO17
VDDIO19
VDDIO20
VDDIO21
VDDIO22
VDDIO23
VDDIO24
VDDIO25
VDDIO26
VDDIO27
VDDIO28
VSS1
VSS2
VSS4
VSS3
VSS7
VSS6
VSS5
VSS9
VSS8
VSS10
VSS11
VSS12
VSS13
VSS14
VSS15
VSS16
VSS17
VSS18
VSS19
VSS20
VSS22
VSS21
VSS24
VSS23
VSS25
VSS26
VSS28
VSS27
VDDIO5
VDD_OC7
VDD_OC6
VDD_ICDIFF
TVDD_P2
TVDD_P1
RVDD_P2
RVDD_P1
DVDD
AVDD_PLL4
AVDD_PLL2
AVDD_PLL3
AVDD_PLL1
VDD24
VDD23
VDD22
VDD21
VDD20
VDD17
VDD16
VDD11
VDD9
VDD10
VDD8
VDD7
VDD6
VDD5
VDD4
VSS55
VSS56
VSS54
VSS53
VSS52
VSS51
VSS50
VSS49
VSS48
VSS47
VSS46
VSS45
VSS44
VSS43
VSS42
VSS41
VSS40
VSS39
VSS38
VSS37
VSS36
VSS35
VSS34
VSS33
VSS32
VSS31
VSS30
VSS29
DVSS
VSS_OC7
VSS_OC6
VSS_ICDIFF
TVSS_P2
TVSS_P1
RVSS_P2
RVSS_P1
AVSS_PLL4
AVSS_PLL3
AVSS_PLL2
AVSS_PLL1
VDDIO1
VDDIO2
VDDIO3
VDDIO4
VDD12
VDD13
VDD14
VDD15
VDD19
VDD18
DS3100_U1
PORT
RTIP
RRING
TTIPB
TRINGA
TRINGB
THZE
TTIPA
ROUT
RCLK
MCLK
RSER TSER
TOUT
TIN
TCLK
DS3100_U1
PORT
RTIP
RRING
TTIPB
TRINGA
TRINGB
THZE
TTIPA
ROUT
RCLK
MCLK
RSER TSER
TOUT
TIN
TCLK
m
JE.
"Suzafi
mars:
Qua
muExumEmmu
mat
msmw mvuaum. 5
mm: um:
m2
mu”
EH
«2
WE
m8
Gm
mm
N . J
a; v:
myuod :37:
m
‘ “so
my:
men
M :wmmavma
E
5%
E5
2
«
own)
#35
m
:
m5.
6?; 7
‘
a‘hm
mm:
a;
Nxxm .E
9
mmumo
:93 e.
:m E‘
223%
w m >
) Lmdxzm .E
. as E1
fubu
an F7
aquuma
h N >
‘Nxzm .m.
135:de
2; E
E E‘
m fiznam
mmumo
A y
% .m‘Nxzm .m‘
sza 9 Cunmmz ES :5 sm WE €65: ézEm jc
m p
a
ALL SIGNAL TRACKS ARE 50 OHM WITH RESPECT TO PLANE
INPUT CLOCKS
Wed May 10 13:21:45 2006
DS3100DK01C0
JML
110705
3OF 13
2
1
R102
2
1
C21
2
1
C15
2
1
R101
2
1
R100
2
1
C12
2
1
C19
2
1
C11
2
4
16
3
12
13
5
14
1
11
15
U29
1
J14
2
1
R16
2
1
R18
14
8
7
1
Y3
4
1
3
2
Y2
5
1
2
Y1
2
1
C3
2
1
R11
2
1
C2
2
1
R28
2
1
C1
2
1
R17
2
1
R35
1
J12
2
1
R34
1
J11
2
1
R33
1
J10
2
1
R32
1
J9
2
1
R31
1
J8
2
1
R30
1
J7
2
1
R29
1
J6
DNP
DNP
12.8MHZ
DNP
DNP
DNP
DNP
DNP
DNP
DNP
IC9
IC8
IC7
IC4
IC3
IC2
IC1
51.1 51.1 51.1 51.1 51.1 51.1 51.1
DNP
12.8MHZ_3.3V
.1UF
33.2
.1UF
12.8MHZ_3.3V
12.8MHZ_3.3V
OSC33
REFCLK
DNP
DNP
.1UF
OSC33
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
VCC
OSC_OCXO
RF_OUT
EFC
GND
RF_OUT
OSC_TCXO
VC VS
GND
OSC_MC853X4
GND
RF_OUT
SUPPLY_V
DS4026_U
VOSC
VCCD
VCC
VREF
GNDOSC
GNDA
GND
GNDD
FOUT
SCL
SDA
momma”
nmEuu d: m5 :0 mEHoEmE mu;
E8
mzmfi o» Emummm 1:: :10
mm mg @0un
. N m w m m r m
2 he a 45
DER amzaé wood 5qu
3E: 5.535%
9% ma:
ER 5mg": 5 E E:
K
x316
mmm
aquH
mmm
1% q a
m y
umzmun ., a ,x ,.. . mCH .
‘ q a nmm Hmm
a man Nmn» \ \ H
y 5 mm L .m p 5 a
\ rmuz, q a ‘ E
«Z v V
, , .
momma NE
”MENU #2 an“ :0 mESEWE “a; wmh Ema
u % nzya a
mnh
a
w m p
quuHm jq
INPUT CLOCKS
PLACE TESTPOINTS ON 100 MIL CENTER
PLACE TESTPOINTS ON 100 MIL CENTER
ALL SIGNAL TRACKS ARE 50 OHM WITH RESPECT TO PLANE
Mon Jul 16 11:05:37 2007
DS3100DK01C0
JML
110705
4OF 13
J28
51.1
1
TP56
1
TP55
1
TP54
1
TP53
1
J37
1
TP52
1
TP51
1
J36
2
1
R68
2
1
R67
2
1
JMP37
2
1
JMP36
1
TP50
1
TP49
1
J35
2
1
R66
1
J34
2
1
R65
1
J33
1
J32
1
J31
1
J30
2
1
R64
2
1
R63
2
1
R62
2
1
R61
2
1
R60
1
J29
1
2
1
R59
GND
SYNC2K
IC14
IC13
IC12
IC11
IC10
IC6NEG
IC6POS
IC5NEG
IC5POS
51.1 51.1 51.1 51.1 51.1
51.1 51.1
NA
51.1 51.1
NA
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
N m w
n
JE.
"Suzafi
mmmmmm
Qua
muExumEmmu
mat
msmw masts. 5 Us
Em» 2:9 mm
Em: :10 mm
a:
55mm in as. 20 353me main
V umzrua
mmnp
E:
rm
m. H
moupuo
omzmuo
moumuo
mmNmPULfi
mz
mmwmpuz
A
mac
:9
5%
Ram:
Eu)
Em)
Em)
Lzo
L5
L15
on
L10
sm
am
am
mm
mm
SNH
mnNnruz
mmuod 532a
mun
mus
Ea
muo
muo
OUTPUT CLOCKS
PLACE TESTPOINTS ON 100 MIL CENTER
DS3100DK01C0
Thu Oct 13 10:14:03 2005
JML
092205
5OF 13
1
TP58
1
TP57
1
TP60
1
TP59
1
J39
1
J38
1
J41
1
J40
4
2
1
U24
2
1
R55
4
2
1
U23
4
2
1
U22
4
2
1
U21
2
1
R53
1
J26
1
J27
4
2
1
U20
4
2
1
U19
2
1
R51
1
J25
4
2
1
U18
4
2
1
U17
2
1
R49
1
J24
4
2
1
U16
4
2
1
U15
2
1
R47
1
J23
4
2
1
U14
4
2
1
U13
2
1
R45
1
J22
4
2
1
U12
4
2
1
U11
2
1
R43
1
J21
2
1
R41
4
2
1
U10
4
2
1
U9
1
J20
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
50 OHM VERT
OC6POS
OC6NEG
OC7POS
OC7NEG
50 OHM VERT
I116
I115
I114
I113
I111
I109
I107
I105
OC11
OC10
OC9
OC5
OC4
OC3
OC2
OC1
0.0
0.0
0.0
0.0
0.0
50 OHM VERT
50 OHM VERT
0.0
50 OHM VERT
0.0
50 OHM VERT
50 OHM VERT
50 OHM VERT
0.0
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
NC7SZ32
AC
B
m
a m
M
m
mm
m
a
F
m
E
s.
x
E.
a
E
WA
WI
DH
HAM?
MW?) m
a a
a a
o
a
a
GPIO
JML
092205
6OF 13
DS3100DK01C0
Thu Oct 13 10:14:03 2005
2
1
R25
2
1
JMP2
4
2
1
U7
2
1
R21
2
1
DS6
2
1
R27
2
1
R46
2
1
DS8
2
1
R50
4
2
1
U25
2
1
JMP4
2
1
R44
2
1
R20
2
1
JMP1
4
2
1
U3
2
1
R19
2
1
DS5
2
1
R26
2
1
R42
2
1
DS7
2
1
R48
4
2
1
U2
2
1
JMP3
2
1
R40
2
1
JMP5
2
1
DS9
2
1
R52
4
2
1
U26
GPIO1
I19
I15
RED
I8
470
I35 I25
I1
I9
1.0K
SRFAIL
GPIO4
GPIO3
GPIO2
10K
RED
I36
I31 I27
I24
I20
I11
I5
I4
470
RED
1.0K
470
10K
1.0K
470
RED
10K
470
RED
1.0K
10K
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
NC7SZ32
AC
B
VCC
NC7SZ32
AC
B
VCC
NC7SZ32
AC
B
VCC
NC7SZ32
AC
B
VCC
NC7SZ32
AC
B
.
m
v m r n
ma LO P Human JE- "mmmznuzm
539ng min
mg: 8.535%
"as 9E
ER SE": E E E:
Hf
N
d
T
‘ 7.
SEE
vow ‘ a z . mum
:Ezqm‘zzou m: ‘ NEEE M m. :Ezqm‘zzou
x m m w a a
W\[fi . [MJ 5 p w. w mm W4
: m
mmm wk i an a
H
fl‘
mmh
{akzqmwzzou
T TCHAI
1
fkle
Wmfi
m
m: ‘ szg
m n w
32:
uEE
GEE
ZflkZflW‘ZZOU
mmh
Eta
BITS TRANSCEIVER DS3100DK01C0
7OF 13
Mon Jul 16 11:06:10 2007
110705
JML
15
RTIP2
1
2
J58
2
5
J56
2
1
R88
1
16
3
14
2
15
T2
2
1
C27
2
1
R87
2
1
R90
2
1
C29
11
6
98
10
7
T2
2
1
JMP12
1
2
J84
2
5
J86
1
2
J57
2
5
J55
1
16
3
14
2
T1
2
1
R86
2
1
R85
2
1
C26
2
1
R89
2
1
C28
11
6
98
10
7
T1
2
1
JMP11
1
2
J83
2
5
J85
TTIPA2
TTIPA1
RRING2
TRINGA2
RRING1
RTIP1
TRINGA1
DNP
DNP
DNP
0.0
560PF
DNP
DNP
DNP
0.0
560PF
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
1:2
CONN_BANTAM
T
R
1:1
1:2
CONN_BANTAM
T
R
CONN_BANTAM
T
R
1:1
CONN_BANTAM
T
R
m
JE.
"Suzafi
mars:
Qua
muExumEmmu
mat
msmw TIE": 5 mm: um:
ZCFZQW\ZZOU
\L H
P a H H.
«.2
w
umzmua
M
moumua
xuad mLmuuxou
ZflFZGmm‘ZZOU
COMPOSITE CLOCK
Wed May 10 13:21:43 2006
JML
DS3100DK01C0
8OF 13
110705
2
1
C9
2
1
C10
2
5
J90
2
1
R56
12
1
10
3
11
T3
2
1
R71
2
1
R70
2
1
R54
2
1
R69
2
5
J89
2
1
R58
2
1
R73
9 4
7
6
8
T3
2
1
R93
2
1
R72
2
1
R57
2
1
C49
3
2
1
JMP6
3
2
1
JMP7
2
1
C48
2
1
C5
2
1
C4
2
1
R77
2
1
R76
2
1
JMP9
2
1
C6
2
1
R75
2
1
R74
2
1
R78
3
2
1
JMP10
2
1
JMP8
4
3
2
6
1
T4
2
1
R79
2
5
J117
NA
0.0
NA
0.0
0.0
.47UF
NA
DNP DNP
0.0
90.9
NA
357
NA
NA
1:1
301
NA
IC2A
OC8NEG
OC8POS
0.0
.47UF
NA
90.9
0.0
NA
IC1A
NA
330PF
330PF
24
24
2.4
2.4
4.7
4.7
.01UF
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
CONN_BANTAM
T
R
2:1
1:1
CONN_BANTAM
T
R
2:1
CONN_BANTAM
T
R
. N m w _ m r m
E 1.0 m 45.
DER amzaé
mmmmmm muExEEmmu 1
"as ma:
nickfimmunmma a
in .133
x 1 m
E .2 SE mfixzmmmsi
Lflom‘u S E N12 35‘ z
a D a 1a 571
.9340 a 1M 1 an
gsmliflfifimd ma 1 a m. 93
:3 Eng mm WE mflm1
mzm a RR .9 E 1 ummn1zzou
1 uz mm in 131m
mm awn 13 m BEE m
w: 12;:
6 Sign a
E 51 Eli. r
on w
a; n; h:
m LV max "1.15414
: ax WEJ L Em
an 151 .Mgmm mnq
an 1513 3 m mam
an «151%
1 9mm 55 Eu 1;
mm . mum u: 91: 1% 33 any:
m 0‘3 mm: 2de
whim L2H
u “E1218 1.39 5.111
1 mmmé 1 .2: a:
E . m m «Z 1%? 591
m
m n Tr é; a;
m m m. I mnmxm
m . m $33 :2 m 5me is 55
I 1 m . m 31859 SIN u 3% mRsJM‘EL%
N NE 33! m. E 3313i: vs
flu: 53‘? 5N1;
m: ammmma N fl
1: av:
n mmmmn
5%
_ n w v. w p a
(SDIO)
(SCLK)
9OF 13
092205
JML
DS3100DK01C0
Thu Oct 13 10:14:03 2005
2
1
R6
2
1
R5
2
1
R4
2
1
R3
2
1
R2
4
2
1
U5
6
54
3
2
1
SW6
7
9
10
11
12
13
14
15
5
4
6
3
2
1
U27
10
9
8
7
65
4
3
2
1
J15
3
2
1
JMP63
3
2
1
JMP62
9
8
7
6
5
4
3
2
1
J50
2
1
C39
2
1
C40
1
2
Y7
2
1
C34
2
1
C36
2
1
C37
2
1
C35
2
6
16
7
10
14
11
9
8
12
13
15
4
5
1
3
U41
2
1
C38
2
1
R110
2
1
R108
2
1
DS16
15
14
38
4
26
13
12
11
10
9
8
7
5
25
24
23
22
21
20
19
18
3
2
1
44
43
42
41
40
29
27
30
31
32
33
34
35
36
37
U42
A8
ALE
NA
AD1
AD2
SLAVE
AD1
RXD0
TX232
TX232
POR
TXD0
INTREQ
AD0
AD1
AD2
AD4
AD6
AD7
A12
RD
WR
AD3
AD5
CSM
CSS
CS_3100
A12
SCS
GND
DNP
0.0
11.0592MHZ
22PF
22PF
10UF
10UF
10UF
10UF
10UF
RXD0
USB_RXD
RX232
RX232
RS232
SLAVE
CSS
330
NA
0.0
0.0
USB_TXD
TXD0
SCS
AD2
NA
SLAVE
CSM
10K
GREEN
74AHC138
0.0
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
VCC
NC7SZ32
AC
B
V5_0
DPDT
B
C
G2B* Y0*
Y1*
Y2*
Y4*
Y5*
Y6*
Y3*
A
Y7*G2A*
G1
6
10
8
4
1
2
3
5
7
9
CONN_10P
CONN_DB9P
H
G
F
C
A
B
D
E
J
DS87C520_TQFP
P1_5
GND<2-0>
XTAL2
VCC
AD0
AD1
AD2
AD4
AD6
AD7
ALE
PSEN
P2_7
P2_6
P2_5
P2_3
P2_4
P2_2
P2_1
P2_0
P1_4
RST
P1_6
P3_1
P3_0
P3_2
P3_4
P3_3
P3_7
P3_6
P3_5
XTAL1
AD3
P1_3
P1_1
P1_2
P1_7
EA
AD5
P1_0
DS232A
T2IN
T1IN
R1IN
R2IN
T2OUT
T1OUT
R2OUT
R1OUT
C1POS
C1NEG
VNEG
VPOS
C2NEG
GND
C2POS
VCC
V5_0
V5_0
. N m w m w r
m. 5 E a;
"E swag
mmmmmm 8.535%
"as 9E
msmm $32: 2 so :i
K
\S? h
553 N i;
é!“ q “x .E m H ML
::: 3 E98: 3 :96: q .
1,573.32 : ‘ H J mv: E 1.: 11
w m m m m m w mm M s mfim
.3; S V name ism
m Eu: PMH Sv~
65513 ‘
31 55513.. M
51 u I
a; as“ r
h “2218
SJEmuu mi) N 2 z m m H:
A ,‘
:5: Ram: m rpmmph
mu: . mlm md‘mzt
a: «z 5%; 1 a v m m
a; 1 m m a a on:
2 Eu:
9
a: m V is
a m m ‘\§lm ‘
nu?
D
Q m m p
DS3100DK01C0
092205
JML
Thu Oct 13 10:14:03 2005
10 OF 13
USB_TXD
USB_RXD
R117
4
3
2
1
SW5
4
2
3
1
U44
2
1
R111
4
2
3
1
U45
2
1
R112
1
TP83
1
TP84
2
1
R123
2
1
R122
2
1
R121
2
1
R120
5
4
3
2
1
J54
2
1
R118
2
1
2
1
C41
2
1
C43
2
1
C42
2
1
R116
2
1
R115
10
9
8
7
65
4
3
2
1
J51
2
1
R113
6
8
4
5
26
11
12
25
24
9 2
7
20
19
18
17
16
15
14
13
22
21
10
3
28
27
1
23
U46
1UF
.1UF
0.0
0.0
NA
NA NA
NA
10K
10K
10K
10K
10K
4.7UF
10K
10K
JTMS
JTDI
JTRST
JTDO
JTCLK
0.0
I37
4.38V
0.0
I40
3.08V
I42
POR
PORNOT
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
MAX811_U
RESET*
VCC
GND
MR*
VCC
MAX812_U
VCC
GND
MR*
RESET
V5_0
CP2101_U1
USBDM
VBUS
USBDP
RTS*
DTR*
CTS*
DSR*
DCD*
RI*
NC7
NC8
NC9
NC10
NC11
RST*
REGIN
NC6
NC4
NC5
NC3
NC2
NC1
GND
VDD
TXD
RXD
SUSPEND_HIGH
SUSPEND_LOW*
USB
GND
SH
DAT+
DAT-
VDD
VCC
6
10
8
4
1
2
3
5
7
9
CONN_10P
. N m w m m
m. kn 2 45.
Dual "Suzafi
mars: muExumEmmu
9% mar
msmw SHE": 5 mm: um:
‘ mj‘mmixq: fl mmNmBz
E 2
mxtmm .55 h
g a m n
m I ma a: v m
‘ 2 a3 m y
N . N. :3 N
.53 “Ev: «W
E W x m: 3
N3 WWPAXQZ
‘ a
a a . ix? {3% h
m
PM E
s m m4 :3 «E m n m
m I Ca 2 . fl
v E ~50 «5 m. v ‘ nWiiE
. .
mmumo 1%; W
E 1 mj‘mmmfixq: an
5
m‘ 25% m Em .mzr: .m
g a m n
m z :3 2 . m E
v m4 «So «E m v a“ 412
ms“. ox: .
1% w
8% v: Em
DS3100DK01C0
Wed May 10 13:21:47 2006
JML
110705
11 OF 13
2
1
JMP14
2
1
JMP15
2
1
JMP13
4
2
1
U28
7
11
6
15
14
13
12
5
4
3
2
10
U8
1
2
J3
2
1
J19
1
2
D7
2
1
J13
1
2
D1
2
1
C7
2
1
R39
2
1
DS4
2
1
R38
2
1
DS3
2
1
R37
2
1
DS2
2
1
R36
2
1
DS1
2
1
C16
2
1
C13
7
11
6
15
14
13
12
5
4
3
2
10
U4
2
1
C20
2
1
C18
2
1
C17
2
1
C14
7
11
6
15
14
13
12
5
4
3
2
10
U6
DUT18
DUT33
OSC33
330
NA
DUT18
OSC33
NA
6.8UF
NA
2.1MM/5.5MM
DUT33
330
330
330
V5_0
4.7UF 4.7UF
6.8UF
1AMP
68UF
4.7UF
6.8UF
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
NC7SZ32
AC
B
MAX1793_U2
IN2
IN3
GND
SHDN*
IN4
IN1
SET
RST*
OUT1
OUT4
OUT2
OUT3
CONN_BANANA_2P
B
A
V5_0
V5_0
CONN_BANANA_2P
B
A
VCC
MAX1793_U2
IN2
IN3
GND
SHDN*
IN4
IN1
SET
RST*
OUT1
OUT4
OUT2
OUT3
V5_0
V5_0
V5_0
MAX1793_U2
IN2
IN3
GND
SHDN*
IN4
IN1
SET
RST*
OUT1
OUT4
OUT2
OUT3
. N m w m m r n
ma 30 Na Guam 4th Emmznufi
:3
Zimwmmnzlfilflnm.
”mmmjmiminjfkfiit
xu‘gpzaumzm zaazz zazz aazz ea
Airings ‘una3QDWoaa a a 3
E3: 3:”:m12mmfmf :
3333 3333 E33 33
3“ “H mH mHmH mHH 333
a f o 3:231 ernrHutrtx 35313 H3 3 «:w: H:
339% o
092205
JML
Thu Oct 13 10:14:03 2005
12 OF 13
DS3100DK01C0
2
1
C142
2
1
C140
2
1
C58
2
1
C54
2
1
C57
2
1
C53
2
1
C56
2
1
C52
2
1
C62
2
1
C66
2
1
C70
2
1
C74
2
1
C78
2
1
C61
2
1
C65
2
1
C69
2
1
C73
2
1
C77
2
1
C82
2
1
C86
2
1
C90
2
1
C94
2
1
C98
2
1
C102
2
1
C106
2
1
C81
2
1
C85
2
1
C89
2
1
C93
2
1
C97
2
1
C101
2
1
C105
2
1
C110
2
1
C114
2
1
C118
2
1
C122
2
1
C126
2
1
C130
2
1
C134
2
1
C109
2
1
C113
2
1
C117
2
1
C121
2
1
C125
2
1
C129
2
1
C133
2
1
C138
2
1
C137
2
1
C60
2
1
C64
2
1
C68
2
1
C72
2
1
C76
1
TP65
1
TP66
1
TP67
2
1
C51
2
1
C55
2
1
C59
2
1
C63
2
1
C67
2
1
C71
2
1
C75
2
1
C80
2
1
C84
2
1
C88
2
1
C92
1
TP68
1
TP69
1
TP71
1
TP70
2
1
C96
2
1
C100
2
1
C104
1
TP72
1
TP73
1
TP74
2
1
C79
2
1
C83
2
1
C87
2
1
C91
2
1
C95
2
1
C99
2
1
C103
2
1
C108
2
1
C112
2
1
C116
1
TP75
1
TP76
1
TP77
1
TP78
2
1
C120
2
1
C124
2
1
C128
2
1
C132
1
TP79
1
TP81
1
TP80
2
1
C107
2
1
C111
2
1
C115
2
1
C119
2
1
C123
2
1
C127
2
1
C131
2
1
C136
1
TP82
2
1
C135
2
1
C153
2
1
C154
2
1
C155
2
1
C169
2
1
C168
2
1
C139
2
1
C141
2
1
C143
2
1
C145
2
1
C147
2
1
C149
2
1
C151
OSC33
10UF
10UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF.1UF
.1UF
I60
.1UF
.1UF
I69 I70
.1UF
.1UF
.1UF.1UF
.1UF
I71
I76
.1UF
.1UF
I77
.1UF
.1UF
I79 I78
.1UF
I90
I91
.1UF
I92
.1UF
I97I96
.1UF
.1UF
I98I99
.1UF
I111
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
I112
.1UF
.1UF .1UF
.1UF
I113
10UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
.1UF
DUT33
DUT18
.1UF
.1UF
.1UF
.1UF
VCC
GND
.1UF
.1UF
.1UF
.1UF
10UF
10UF
10UF
10UF
10UF10UF
10UF
.1UF
.1UF
.1UF
.1UF
.1UF
V5_0
10UF
10UF
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
V5_0
VCC
VCC
N m w m
2 Lo m.
Lama
45.
"Suzafi
mmmmmm
muExumEmmu
mat
Go a:
ma:
nixzqmd qumzmw
:Enau E chukzzou :vfiixu ExC
mkzuzouzou 07Cuouu3m nzq 0x3 mmmvmn ”Dana
m 0% mmu nzq SEE ow :3 ”fig:
mmmuuq as muobufiumu E mumuzjn umfiorm umunq
SE. OF XF xuod EHmouzou zo aqu umuzqru
uHuOJ nmmwmvmm uzq a .E 0% 54 x0 n3 mug:
UI {can urm 0% m: umozqtu
mum onEszuE xuod ukaouzou mix:
5qu 6016 mimouzoo E mumu Lusmm ”Baum
qubn mac: x3: dbé mam:
mzoCumzzou min dté ”Emma
mumi CméEm E muokmkmfi :10 s Eccq
E. )m; E ain‘t Eccq
HE E umqudu
zuH 20E n: N 204 65H: :05 mmruzzm nzq mum]! ”mug 3m 3302mm
mm 10E: 0? muoEszmun bu nmwzqru
mjomijmumE 315 .uq: 502m: 330:
331533 mnuxzmu :52 fqu 1301 insisfljmfl 3:13.911 x:
1m 3mm uou mmamdu
Em _ E 5
msnsms Sm
mamas sq
mam a as ms
mswgm Vs
msqmn a mg
mg? a H mm
mmrE H E
\ >HOFWHI
ZOHmHDMU
GENERAL CLEAN-UP
B0 -050206 -
01 -110705 -RELEASE FOR REVIEW
REVISION HISTORY -
MOVED CSM TO 1000 AND CSS TO 0
ADDED 330PF CAPS AT COMPOSITE CLOCK INPUT
CHANGED CAP ON COMPOSITE CLOCK TX TO .01UF
ADDED INTEL BUS CONNECTIONS
04 -010406 -CHANGED REF DESIGNATORS TO MATCH EE
ADDED 0OHM RESISTORS AT SDIO,SCLK,SCS
FIXED COMPOSITE CLOCK TERMINATION RES
C0 -071607 -FIXED RXD,TXD CONNECTION TO CP2101
ADDED DS4026 TCXO AND SUPPORTING COMPONENTS
ADDED SHORTED JUMPERS AT REGULATORS FOR ACCESS
CHANGED 138 TO AHC FROM HC
ADDED BUFFER TO 1.8V LED
A0 -012106 -RELEASE TO FAB
03 -112105 -MOVED MEMORY MAP,OTHER MISCELLANEOUS
MOVED UP OK LED TO P1.1 AND REVERSED LOGIC
MADE INTEL MUX MODE DEFAULT
05 -011306 -REMOVED 5V CAPS, LEDS AND SWITCHES FROM MICRO, LOW ZTP FROM ICN
02 -111905 -FIX TRANSFORMER ISSUES,ADDED POWER JACK,FIXED CSM/CSS LOGIC,ADDED TPS
DS3100DK01C0
Thu Oct 13 10:14:03 2005
092205
JML
13 OF 13
PAGE:
DATE:
TITLE:
ENGINEER:
A A
B B
C C
DD
1
1
2
2
3
3
4
45
56
6
7
7
8
8
Microsemi.
www.microsemi.com
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-
reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif.
Learn more at
www.microsemi.com.
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
Products related to this Datasheet
KIT DEMO DS3100