L4974A Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
5.3;; 12v u; a 5m: “7 I l l l n 1 n 17 razoruwunkn UNDEPUDLMGE “FEW“ H Cum: 3- Saws: 3. ,, J_ ,9 saw. can. map, ppm. wmce pm my cum 1 l I I wanna r: nun [INTER 1 mm; LHTEH J-c a at ' mum “ A L’ D G 25 \Neeub I cum: 1;: s 5 amp _ CD"°- clx1:|:)—®—< 15,15="" t="" ’="" uus="" _‘_="" ¥="" sun="" 12mm="" 4="" a="" 5mm="" l="" 4="" 974="" 9="" e5:="" i="" 2="" 3="" ind="" ”511452411="" m="" dem-w="" um="">
L4974A
June 2000
3.5A SWITCHING REGULATOR
®
.3.5A OUTPUT CURRENT
.5.1V TO 40V OUTPUT VOLTAGE RANGE
.0 TO 90% DUTY CYCLE RANGE
.INTERNAL FEED-FORWARD LINE REG.
.INTERNAL CURRENT LIMITING
.PRECISE 5.1V ± 2% ON CHIP REFERENCE
.RESET AND POWER FAIL FUNCTIONS
.INPUT/OUTPUT SYNC PIN
.UNDER VOLTAGE LOCK OUT WITH HYS-
TERETIC TURN-ON
.PWM LATCH FOR SINGLE PULSE PER PE-
RIOD
.VERY HIGH EFFICIENCY
.SWITCHING FREQUENCY UP TO 200KHz
.THERMAL SHUTDOWN
.CONTINUOUS MODE OPERATION
DESCRIPTION
The L4974A is a stepdown monolithic power switch-
ing regulator delivering 3.5A at a voltage variable
from 5.1 to 40V.
Realized with BCD mixed technology, the device
uses a DMOS output transistor to obtain very high
efficiency and very fast switching times. Features of
BLOCK DIAGRAM
POWERDIP (16 + 2 + 2)
the L4974A include reset and power fail for micro-
processors, feed forward line regulation, soft start,
limiting current and thermal protection. The device
is mounted in a Powerdip 16 + 2 + 2 plastic package
and requires few external components. Efficient
operation at switching frequencies up to 200KHz
allows reduction in the size and cost of external filter
component.
ORDERING NUMBER : L4974A
1/22
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
MULTIPOWER BCD TECHNOLOGY
BUDTSTRAP I: RESET DELAY |: RESET OUT |: p591]. INPUT I: GND I: 6ND l: FRED. camp. I: SDFT START E FEEDBACK IN. I: SYNC INPUT I: 29 19 18 1? 16 15 14 13 12 1B 11 mvmmnuuu L0 :IDUTRuT ZIN.c. j: 05:: BR US: 38:40 :IGND :I Ustart :IUreF :IN.c. 3w IISJL l322- 52
PIN CONNECTION (top view)
THERMAL DATA
Symbol Parameter Value Unit
Rth j-pins
Rth j-amb
Thermal Resistance Junction-Pins max
Thermal Resistance Junction-ambient max 12
60 °C/W
°C/W
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V11 Input Voltage 55 V
V11 Input Operating Voltage 50 V
V20 Output DC Voltage
Output Peak Voltage at t = 0.1µs f = 200khz -1
-5 V
V
I20 Maximum Output Current Internally Limited
VIBoostrap Voltage
Boostrap Operating Voltage 65
V11 + 15 V
V
V4, V8Input Voltage at Pins 4, 12 12 V
V3Reset Output Voltage 50 V
I3Reset Output Sink Current 50 mA
V2, V7, V9, V10 Input Voltage at Pin 2, 7, 9, 10 7 V
I2Reset Delay Sink Current 30 mA
I7Error Amplifier Output Sink Current 1 A
I8Soft Start Sink Current 30 mA
Ptot Total Power Dissipation at TPINS 90°C
at Tamb = 70°C (No copper area on PCB) 5
1.3 W
W
TJ, Tstg Junction and Storage Temperature -40 to 150 °C
L4974A
2/22
PIN FUNCTIONS
NoName Function
1 BOOTSTRAP A Cboot capacitor connected between this terminal and the output allows to drive
properly the internal D-MOS transistor.
2 RESET DELAY A Cd capacitor connected between this terminal and ground determines the reset
signal delay time.
3 RESET OUT Open Collector Reset/power Fail Signal Output. This output is high when the supply
and the output voltages are safe.
4 RESET INPUT Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a divider
to the input for power fail function. It must be connected to the pin 14 an external 30K
resistor when power fail signal not required.
5, 6
15, 16 GROUND Common Ground Terminal
7 FREQUENCY
COMPENSATION A series RC network connected between this terminal and ground determines the
regulation loop gain characteristics.
8 SOFT START Soft Start Time Constant. A capacitor is connected between thi sterminal and ground
to define the soft start time constant.
9 FEEDBACK INPUT The Feedback Terminal of the Regulation Loop. The output is connected directly to
this terminal for 5.1V operation; It is connected via a divider for higher voltages.
10 SYNC INPUT Multiple L4974A’s are synchronized by connecting pin 10 inputs together or via an
external syncr. pulse.
11 SUPPLY VOLTAGE Unregulated Input Voltage.
12, 19 N.C. Not Connected.
13 Vref 5.1V Vref Device Reference Voltage.
14 Vstart Internal Start-up Circuit to Drive the Power Stage.
17 OSCILLATOR Rosc. External resistor connected to ground determines the constant charging current
of Cosc.
18 OSCILLATOR Cosc. External capacitor connected to ground determines (with Rosc) the switching
frequency.
20 OUTPUT Regulator Output.
L4974A
3/22
The L4974A is a 3.5A monolithic stepdown switch-
ing regulator working in continuous mode realized in
the new BCD Technology. This technology allows
the integration of isolated vertical DMOS power tran-
sistors plus mixed CMOS/Bipolar transistors.
The device can deliver 3.5A at an output voltage ad-
justable from 5.1V to 40V and contains diagnostic
and control functions that make it particularly suit-
able for microprocessor based systems.
BLOCK DIAGRAM
The block diagram shows the DMOS power tran-
sistors and the PWM control loop. Integrated func-
tions include a reference voltage trimmed to 5.1V
± 2%, soft start, undervoltage lockout, oscillator with
feedforward control, pulse by pulse current limit,
thermal shutdown and finally the reset and power
fail circuit. The reset and power fail circuit provides
an output signal for a microprocessor indicating the
status of the system.
Device turn on is around 11V with a typical 1V hys-
terysis, this threshold porvides a correct voltage for
the driving stage of the DMOS gate and the hyste-
rysis prevents instabilities.
An external bootstrap capacitor charge to 12V by an
internal voltage reference is needed to provide cor-
rect gate drive to the power DMOS. The driving cir-
cuit is able to source and sink peak currents of
around 0.5A to the gate of the DMOS transistor. A
typical switching time of the current in the DMOS
transistor is 50ns. Due to the fast commutation
switching frequencies up to 200kHz are possible.
The PWM control loop consists of a sawtooth oscil-
lator, error amplifier, comparator, latch and the out-
put stage. An error signal is produced by comparing
the output voltage with the precise 5.1V ± 2% on chip
reference. This error signal is then compared with
the sawtooth oscillator in order to generate frixed
frequency pulse width modulated drive for the out-
put stage. A PWM latch is included to eliminate
multiple pulsing within a period even in noisy envi-
ronments.
The gain and stability of the loop can be adjusted by
an external RC network connected to the output of
the error amplifier. A voltage feedforward control
has been added to the oscillator, this maintains su-
perior line regulation over a wide input voltage
range. Closing the loop directly gives an output vol-
tage of 5.1V, higher voltages are obtained by insert-
ing a voltage divider.
At turn on, output overcurrents are prevented by the
soft start function (fig. 2). The error amplifier is in-
itially clamped by an external capacitor, Css, and al-
lowed to rise linearly under the charge of an internal
constant current source.
Output overload protection is provided by a current
limit circuit. The load current is sensed by a internal
metal resistor connected to a comparator. When the
load current exceeds a preset threshold, the output
of the comparator sets a flip flop which turns off the
power DMOS. The next clock pulse, from an internal
40kHz oscillator, will reset the flip flop and the power
DMOS will again conduct. This current protection
method, ensures a constant current output when the
system is overloaded or short circuited and limits the
switching frequency, in this condition, to 40kHz. The
Reset and Power fail circuit (fig. 4), generates an
output signal when the supply voltage exceeds a
threshold programmed by an external voltage di-
vider. The reset signal, is generated with a delay
time programmed by a external capacitor on the de-
lay pin. When the supply voltage falls below the
threshold or the output voltage goes below 5V, the
reset output goes low immediately. The reset output
is an open drain.
Fig. 4A shows the case when the supply voltage is
higher than the threshold, but the output voltage is
not yet 5V.
Fig. 4B shows the case when the output is 5.1V, but
the supply voltage is not yet higher than the fixed
threshold.
The thermal protection disables circuit operation
when the junction temperature reaches about
150°C and has a hysterysis to prevent unstable
conditions.
CIRCUIT OPERATION
L4974A
4/22
U2 Ui-BBU Ui-15U Uc t U7 — — — — Ui-aBU n Ui-15U ' t ”51143)! 7 CLnann ERROR “HDLIFJER [OUTPUT / / / U: A A L t OUTPUT . / CURRENT n m I I t SOFT START TIME ”311.4573-55 OSCILLQTDR UULTQEE flJJ'IFl—l'll'lH—I'II'LI'U'L up," 22 SET CLOCK CLKI I PEAK :z;: : [Tl < z;="" ;="" inductup="" current="" pinzb="" cupeent="" n:="" u="" 452:="" -="" a:="">
Figure 1 : Feedforward Waveform.
Figure 2 : Soft Start Function.
Figure 3 : Limiting Current Function.
L4974A
5/22
U1 QISING PLFRJL THRESHOLD EnLLms p.EmL THRESHOLD ”£353.35: “U mu —- TURN~OFF THRESHOLD D t P.FML ouT D t 5.1U uo.5.1u 1:15an RESET ——Lsu‘ 5U .aaamv THRESHOLD ‘ / HISTERESIS FnLLlNG RESET * ‘5 THRESHOLD DUTDUT nESET * t EDI? EDR DELAY RESET PDUER PHIL TlnE nanny-~41 Ui _£ :msms p. FAIL THRESHOLD TURN ON THRESHOLD —-Dt Uu 5.1K) —Dt OUTPUT RESET H tDP DELAY RESET DE I131L4971- n
Figure 4 : Reset and Power Fail Functions.
B
A
L4974A
6/22
ELECTRICAL CHARACTERISTICS (refer to the test circuit, TJ = 25°C, Vi = 35V, R4 = 30K,
C9 = 2.7nF, fSW = 100KHz typ, unless otherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
ViInput Volt. Range (pin 11) Vo = Vref to 40V
Io = 3.5A (*) 15 50 V 5
VoOutput Voltage Vi =15V to 50V
Io = 2A; Vo = Vref
55.15.2V 5
V
oLine Regulation VI = 15V to 50V
Io = 1A; Vo = Vref
12 30 mV
VoLoad Regulation VO = Vref Io = 1A to 3.5A
Io = 2A to 3A 825mV
410mV
V
dDropout Voltage between
Pin 11 and 20 Io = 2A
Io = 3.5A 0.25
0.45 0.4
0.7 V
I20L Max Limiting Current Vi = 15V to 50V
Vo = Vref to 40V 4 4.75 5.5 A
ηEfficiency Io = 3.5A, f = 100KHz
Vo = Vref
Vo = 12V 80 85
90 %
%
SVR Supply Voltage Ripple
Rejection Vi = 2VRMS; Io = 5A
f = 100Hz; Vo = Vref
56 60 dB 5
f Switching Frequency 90 100 110 KHz 5
f/Vi Voltage Stability of
Switching
Frequency
Vi = 15V to 45V 2 6 % 5
f/TjTemperature Stability of
Switching Frequency Tj = 0 to 125°C 1 % 5
fmax Maximum Operating
Switching Frequency Vo = Vref R4 = 15K
Io = 3.5A C9 = 2.2nF 200 KHz 5
(*) Pulse testing with a low duty cycle
Vref SECTION (pin 13)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V13 Reference Voltage 5 5.1 5.2 V 7
V13 Line Regulation Vi = 15V to 50V 10 25 mV 7
V13 Load Regulation I13 = 0 to 1mA 20 40 mV 7
V13
T
Average Temperature
Coefficient Reference
Voltage
Tj = 0°C to 125°C 0.4 mV/°C7
I
13 short Short Circuit Current Limit V13 = 0 70 mA 7
VSTART SECTION (pin 15)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V14 Reference Voltage 11.4 12 12.6 V 7
V14 Line Regulation Vi = 15 to 50V 0.6 1.4 V 7
V14 Load Regulation I14 = 0 to 1mA 50 200 mV 7
I14 short Short Circuit Current Limit V15 = 0V 80 mA 7
L4974A
7/22
ELECTRICAL CHARACTERISTICS (continued)
DC CHARACTERISTICS
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V11on Turn-on Threshold 10 11 12 V 7A
V11 Hyst Turn-off Hysteresys 1 V 7A
I11Q Quiescent Current V8 = 0; S1 = D 13 19 mA 7A
I11OQ Operating Supply Current V8 = 0; S1 = B; S2 = B 16 23 mA 7A
I20L Out Leak Current Vi = 55V; S3 = A; V8 = 0 2 mA 7A
SOFT START (pin 8)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
I8Soft Start Source Current V8 = 3V; V9 = 0V 80 115 150 µA7B
V
8Output Saturation Voltage I8 = 20mA; V11 = 10V
I8 = 200µA; V11 = 10V 1
0.7 V
V7B
7B
ERROR AMPLIFIER
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V7H High Level Out Voltage I7 = -100µA; S1 = C
V9 = 4.7V 6V7C
V
7L Low Level Out Voltage I7 = 100µA; S1 = C
V9 = 5.3V; 1.2 V 7C
I7H Source Output Current V7 = 1V; V7 = 4.7V 100 150 µA7C
-I7L Sink Output Current V7 = 6V; V9 = 5.3V 100 150 µA7C
I
9Input Bias Current S1 = B; RS = 10K0.4 3 µA7C
G
VDC Open Loop Gain S1 = A; RS = 1060 dB 7C
SVR Supply Voltage Rejection 15 < Vi < 50V 60 80 dB 7C
VOS Input Offset Voltage RS = 50S1 = A 2 10 mV 7C
RAMP GENERATOR (pin 18)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V18 Ramp Valley S1 = B; S2 = B 1.2 1.5 V 7A
V18 Ramp Peak S1 = B Vi = 15V
S2 = B Vi = 45V 2.5
5.5 V
V7A
7A
I18 Min. Ramp Current S1 = A; I17 = 100µA 270 300 µA7A
I
18 Max. Ramp Current S1 = A; I17 = 1mA 2.4 2.7 mA 7A
SYNC FUNCTION (pin 10)
Symbol Parameter Test Condition Min. Typ. Max. Unit Fig.
V10 Low Input Voltage Vi = 15V to 50V; V8 = 0;
S1 = B; S2 = B; S4 = B –0.3 0.9 V 7A
V10 High Input voltage V8 = 0;
S1 = B; S2 = B; S4 = B 2.5 5.5 V 7A
+I10L Sync Input Current with Low
Input Voltage V10 = V18 = 0.9V; S4 = B;
S1 = B; S2 = B 0.4 mA 7A
+I10H Input Current with High
Input Voltage V10 = 2.5V 1.5 mA 7A
V10 Output Amplitude 4 5 V
tWOutput Pulse Width Vthr = 2.5V 0.3 0.5 0.8 µs–
L4974A
8/22
RESET OUT 0TP2 SYNC TPl T :13" p5 L1 Uo 14 11 1a 3 129 — A 13 Liana 9 1m 8 2 7 1218 .=. =. = 01‘ ns" -- .— m .. CB 124 C12 :1: cu :15 age ] 15 R3 C5 fit? RSI R8 GND nan 4:24 » :2 GND
RESET AND POWER FAIL FUNCTIONS
Symbol Parameter Test Conditions Min. Typ. Max. Unit Fig.
V9R Rising Thereshold Voltage
(pin 9) Vi = 15 to 50V
V4 = 5.3V Vref
-130 Vref
-100 Vref
-80 V
mV 7D
V9F Falling Thereshold Voltage
(pin 9) Vi = 15 to 50V
V4 = 5.3V 4.77 Vref
-200 Vref
-160 V
mV 7D
V2H Delay High Threshold Volt. Vi = 15 to 50V
V4 = 5.3V V9 = V13
4.95 5.1 5.25 V 7D
V2L Delay Low Threshold Volt. Vi = 15 to 50V
V4 = 4.7V V9 = V13
1 1.1 1.2 V 7D
I2SO Delay Source Current V4 = 5.3V; V2 = 3V 30 60 80 µA7D
I
2SI Delay Source Sink Current V4 = 4.7V; V2 = 3V 10 mA 7D
V3S Output Saturation Voltage I3 = 15mA; S1 = B V4 = 4.7V 0.4 V 7D
I3Output Leak Current V3 = 50V; S1 = A 100 µA7D
V
4R Rising Threshold Voltage V9 = V13 4.955 5.1 5.25 V 7D
V4H Hysteresis 0.4 0.5 0.6 V 7D
I4Input Bias Current 1 3 µA7D
ELECTRICAL CHARACTERISTICS (continued)
Figure 5 : Test and Evaluation Board Circuit.
TYPICAL PERFORMANCES (using evaluation board) :
n = 83% (Vi = 35V ; Vo = VREF ; Io = 3.5A ; fsw = 100KHz)
Vo RIPPLE = 30mV (at 1A)
Line regulation = 12mV (Vi = 15 to 50V)
Load regulation = 8mV (Io = 1 to 3.5A)
for component values Refer to the fig. 5 (Part list).
L4974A
9/22
@9953 DI @632: ° qmfi m fifig 90 @n + L 453—? °‘ woom J
PART LIST
R1 = 30K
R2 = 10K
R3 = 15K
R4 = 30K
R5 = 22
R6 = 4.7K
R7 = see table A
R8 = OPTION
R9 = 4.7K
* C1 = C2 = 1000µF 63V EYF (ROE)
C3 = C4 = C5 = C6 = 2,2µF 50V
C7 = 390pF Film
C8 = 22nF MKT 1837 (ERO)
C9 = 2.7nF KP 1830 (ERO)
C10 = 0.33µF Film
C11 = 1nF
** C12 = C13 = C14 = 100µF 40V EKR (ROE)
C15 = 1µF Film
D1 = SB 560 (OR EQUIVALENT)
L1 = 150µH
core 58310 MAGNETICS
45 TURNS 0.91mm (AWG 19)
COGEMA 949181
* 2 capacitors in parallel to increase input RMS current capability.
* * 3 capacitors in parallel to reduce total output ESR.
Table A
V0R9R7
12V
15V
18V
24V
4.7k
4.7k
4.7k
4.7k
6.2kW
9.1k
12
18
Table B
SUGGESTED BOOSTRAP CAPACITORS
Operating Frequency Boostrap Cap.c10
f = 20KHz 680nF
f = 50KHz 470nF
f = 100KHz 330nF
f = 200KHz 220nF
f = 500KHz 100nF
Figure 6a : Component Layout of fig.5 (1 : 1 scale). Evaluation Board Available
L4974A
10/22
I_ (:14 C13 c12 _| men/72 n (:2 I “o '5 Q10 L1 Jg . can In: E V ' ‘ ' c1 €82: °‘ Emma “Ell QQ‘U |_ 1%,? VIC OGND _l U11 % =1BUF 11 I 14 13 A I 8 114 U14 I 2_2U,_- i 2.2%- E U13 113 I151]. 4972~95 l-SFEI-
Figure 7 : DC Test Circuits.
Figure 6b: P.C. Board and Component Layout of the Circuit of Fig. 5. (1:1 scale)
L4974A
11/22
”‘ F1 Imur n 84 B A \31 17 11 19 fio—_|_ 117g 9 118 me E I SS 32K 9 U28 IZEL m ._. m mu m —— 2%? US i I151L1572-U6A i U11 {IBUF E 11 I 18 |_—s e 5.6 U8 15.15 J. E I191L 4372- I7 flauF ”1 °——l]l:|. élaaaun 11 n c s: 52 9 7 c 5 6 19 n - B 15.15 B D 7:: U9 59“ 19K J. U? 119mm 17 H.91Ll922-98
Figure 7C.
Figure 7B.
Figure 7A.
L4974A
12/22
14 5.6 3 ”911.4572- 15 “m unwary; 11111 [1511492414 mm (mm 29 25 F-ZBBKHZ 18 18 16 15 r-mamz 14 14 12 12 m (42210-12 jg UITHEIUT a USEILLRTUR \lI‘fHuuY 6 m 12 13 29 aa 49 59mm) ~52 a an Jan 155 TiI'C)
Figure 7D.
Figure 8 : Quiescent Drain Current vs. Supply
Voltage (0% duty cycle - see fig. 7A). Figure 9 : Quiescent Drain Current vs. Junction
Temperature (0% duty cycle).
L4974A
13/22
”9114524-55 1118 (mg) 22 28 18 16 14 12 18 F-ZBEKHz r-188KH2 8 28 48 68 88 D.E.Il! "3114:24-96 U13 1U) 5.158 5.125 5.188 5.885 5.858 '56 8 58 188 Tit‘c! "5114524755 U11 1U] 12.4 12.2 12.8 11.8 11.6 ~58 8 58 188 TJI‘E! ”9:14:22 14 Urex nu) 5.128 5.118 5.188 5.898 5.888 1815 28 25 38 35 AB 45 58 UiHJI H!!Ll!)l-E) U14 1U) 12.588 12.258 12.888 11.758 11.588 11.258 11.888 18.758 18 15 28 25 36 :15 A8 45 58 uixw 0 mi m3 If 1 (NH
Figure 10 : Quiescent Drain Current vs. Duty Cy-
cle. Figure 11 : Reference Voltage (pin 13) vs. Vi
(see fig. 7).
Figure 12 : Reference Voltage (pin 13) vs. Junc-
tion Temperature (see fig. 7). Figure 13 : Reference Voltage (pin 14) vs. Vi
(see fig. 7).
Figure 14 : Reference Voltage (pin 14) vs. Junc-
tion Temperature (see fig. 7). Figure 15 : Reference Voltage 5.1V (pin 13) Sup-
ply Voltage Ripple Rejection vs. Fre-
SVR
(dB)
L4974A
14/22
r1211 45247” m—m “a ms 122 55 BE 12 15 In 25 32 35 aa 45 SE vim) ”114521-12 rsu ‘ (KHz) CB-nF EBB we ma 5“ \\J 3. \ \ \ \ 1.5nF \\\\ 2,2nF \ IMF 22 12 12 2B 32 AB 59 SB 72 mm man-nu svn (an) 1n an I I0 “:1 m1 c hm H3114124-17 F XKH2| 129 um _ ‘ BE SE Ui-JSU 'SB 2 SE 159 Tii’C} DC ”9111922715 l3) CS-nF .45u 168 \ 92 4.7 3.3 SE 79 E 52 me 153 (mm) a 10 m m '0")
Figure 16 : Switching Frequency vs. Input Voltage
(see fig. 5). Figure 17 : Switching Frequency vs. Junction
Temperature (see fig. 5).
Figure 18 : Switching Frequency vs. R4
(see fig.5). Figure 19 : Maximum Duty Cycle vs. Frequency.
Figure 20 : Supply Voltage Ripple Rejection vs.
Frequency (see fig. 5). Figure 21 : Efficiency vs. Output Voltage.
L4974A
15/22
M-mm UD (U! 1.5 Pm m 5 mm) Hanna» 1: “-125”: 4 129m) nanny: so v. m Lou) cunnzm ‘0 "’m “o . m M .nnmx 200 “HP”! mums (muse -zou o ox. M u 1.5 1 (ms! 11:11:52: :2 UD w} 1.2 -SEJ E: SE] 188 158 TJI‘C) ”um um L5
Figure 22 : Line Transient Response (see fig. 5). Figure 23 : Load Transient Response (see fig. 5).
Figure 24 : Dropout Voltage between Pin 11 and
Pin 20 vs. Current at Pin 20. Figure 25 : .Dropout Voltage between Pin 11 and
Pin 20 vs. Junction Temperature.
Figure 26 : Power Dissipation (device only) vs.
Input Voltage. Figure 27 : Power Dissipation (device only) vs.
Input Voltage.
L4974A
16/22
m m Pm um mum manna I: m 15 wow) 5 m Is to 15 mm Wm Phat m : . . z , ‘ ,0“, n . 1 J .0”, “Hamil M Ill ”\m "0 km , mm. 1 /r . / 0 E a) 3 Im him“)
Figure 28 : Power Dissipation (device only) vs.
Output Voltage. Figure 29 : Power Dissipation (device only) vs.
Output Voltage.
Figure 30 : Power Dissipation (device only) vs.
Output Current. Figure 31 : Power Dissipation (device only) vs.
Output Current.
Figure 32 : Efficiency vs. Output Current. Figure 33 : Test PCB Thermal Characteristic.
L4974A
17/22
Rthj-e K'C/Ul run 4522-): 65 ”311137227! Pd I“) 5 g E 52 4 2 3 2 thickness: 35m assznmzn rm ?« 4E THE DC EDQRD j. uva m at g z 9, a 3,”? $ 32 a 1 22 a \::§§ a j 2 3 ‘ I‘Em} —49 a 59 129 Tambl‘C) "511152 - EU I 4’1 ¢ Nate: THE JunD In DHaaE SHIFT ldE) m m’m xs DuE m m: smummw 192 an a 9 -52 45 ,1EE 99 7152 1:5 7222 A 12 in? 1a3 12 125 135 12’ FtHz!
Figure 34 : Junction to Ambient Thermal Resistance
vs. Area on Board Heatsink (DIP 16+2+2)
Figure 35: Maximum Allowable Power Dissipa-
tion vs. Ambient Temperature (Pow-
erdip)
Figure 36: Open Loop Frequency and Phase of Er-
ror Amplifier (see fig. 7C).
L4974A
18/22
Ui-SSU SYNC 2 T1121 9.2211: SEQUH Un 14 11 19 3 1 — A 2K 3 BER L 4 9 .7 4 9 9 313 Di 3 2 7 17 18 u. 3 u. m LL 15 D1 fig 3 v. __= u u. u. u. u - u. N x u. "’ $3333: 33333 3:: N :2 ::-E E a] n] rs} a} m' 3 x oi m 2 z a It’llll}l-l.’fl GND GND can: mun-w nacnzncs KIwL EU 55 man: man. 9.71m mm: 221 Il479nF 15K L1 18 E 7 _ 3391f: fig L497en n /Lo_S 1U Mn T R ‘ Ui-35U a; 9 S E EESTEWWUF Io-1Bfi 33%qu I3 1 13 2 a 39K E a ‘78 F U I 11 1a 1 29 7 15K L4974Q SLAUE 9 339 F 22 15.16 D I In: 5.5 17 19 9 .1. 33K st:SBKHz J- 417.11: I 11911 4929-14 L1-BEuN can: 77:71-37 nasuzncs xum nu my mums dlam 1.3mm mus us: LZ-JEBuH tun: vsas-a: nanNzncs KDDL nu as mans diam 1m mm 15)
Figure 37 : 3.5A – 5.1V Low Cost Application Circuit.
Figure 38 : A 5.1V/12V Multiple Supply. Note the Synchronization between the L4974A and L4970A.
L4974A
19/22
L457ER LAS74¢4 SYNC SYNC 13 1a 1 2 17 13 39K _L 33K i I 2.7nF I 2.7nF nnsrzn SLauE r5“ g1aatz ”3114:24-14» 9.22uF 11 4.5.5 1” 15.15 1A 13 LASPAR a 7 B 17 18 QQBEUF F 63UL 19" A7K 4‘7 A.7nF ur 38K 2 L4962 m 11 svuaa-1aa 33nF 2.2UF 15K 1aaur 2.2nF n5114124-15 mama mp: nan-n7 mnuzncs KDDL nu ss mans diam LZ-ZEIDH cw: nus-v msnznzs mm. rm :4 mans an. Inn mm: 2:) mm mm; 221 iaEUF ‘24U/29 ‘SU/IA
Figure 39 : L4974A’s Sync. Example.
Figure 40: 1A/24V Multiple Supply. Note the synchronization between the L4974A and L4962
L4974A
20/22
|_\V_VV_||_I|_I|_VV_VV_II_II_V z. 11 :3 "' 1 1. |_l\_l\_l|_l|_l|_l\_l\_l|_l|_l
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 24.80 0.976
E 8.80 0.346
e 2.54 0.100
e3 22.86 0.900
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 1.27 0.050
Powerdip 20
OUTLINE AND
MECHANICAL DATA
L4974A
21/22
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-
croelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
L4974A
22/22

Products related to this Datasheet

IC REG BUCK ADJ 3.5A 20DIP